The Sagnac interferometer offers distinct advantages in vibrational wave detection. In this study, an air-coupled transducer and a compact fiber-optic Sagnac interferometer were developed for non-contact elasticity characterization in biological tissues. Given the challenge of limited light collection by a compact fiber optic Sagnac interferometer in biological tissues, this study aims to explore the potential of using a compact Sagnac interferometer to measure vibrational waves in biological tissues. The speeds of the generated vibrational surface waves in tissue-mimic phantoms were measured. Measurement errors caused by cross-correlation wave tracking were analyzed, and the performance of the integrated system was characterized. The results demonstrated the effectiveness of the integrated system and the cross-correlation algorithm in tracing the speed of vibrational surface waves in tissue-mimicking phantoms. They suggested potential applications for the non-invasive, contactless characterization of the mechanical properties in soft biological tissues.
more »
« less
This content will become publicly available on May 13, 2026
Using compact fiber optic Sagnac interferometer for biological-based soft tissue elasticity characterization
he further signal processing for wave signal extraction as in displacement-based detection systems. However, due to both interfering lights coming from sample surface, the collected light in a fiber-optic-based Sagnac interferometer system is very weak when applied to biological tissue, where the refractive index of tissue and air are close. The objective of this paper is to study the feasibility using a compact fiber-optic Sagnac interferometer to detect vibrational waves on a biological tissue surface. An actuator made with a 10mm x 10mm x 3mm piezoelectric chip loaded on a 3D-printed polymer-made prism-shaped wedge (1cm x1cm x1cm) was used for ultrasound surface wave excitation. A bulk copolymer-in-oil phantom (100mm diameter with 27mm height) was used to mimic biological tissues. A compact fiber-optic-based interferometer was used to detect the propagation of surface waves in the tissue mimicking phantom and the wave propagation speeds were determined based on the wave detection. Young’s modulus was calculated based on the measured wave speed on the phantom surface. A tensile testing machine was used to measure the Young’s modulus in a compression mode as a comparison. The results were compared.
more »
« less
- Award ID(s):
- 2347575
- PAR ID:
- 10596201
- Editor(s):
- Rizzo, Piervincenzo; Su, Zhongqing; Ricci, Fabrizio; Peters, Kara J
- Publisher / Repository:
- SPIE
- Date Published:
- ISBN:
- 9781510686601
- Page Range / eLocation ID:
- 22
- Format(s):
- Medium: X
- Location:
- Vancouver, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The detection of low-frequency gravitational waves on Earth requires the reduction of displacement noise, which dominates the low-frequency band. One method to cancel test mass displacement noise is a neutron displacement-noise-free interferometer (DFI). This paper proposes a new neutron DFI configuration, a Sagnac-type neutron DFI, which uses a Sagnac interferometer in place of the Mach–Zehnder interferometer. We demonstrate that a sensitivity of the Sagnac-type neutron DFI is higher than that of a conventional neutron DFI with the same interferometer scale. This configuration is particularly significant for neutron DFIs with limited space for construction and limited flux from available neutron sources.more » « less
-
Abstract The effective quality factor of the cantilever plays a fundamental role in dynamic mode atomic force microscopy. Here we present a technique to modify the quality factor of an atomic force microscopy cantilever within a Fabry–Perot optical interferometer. The experimental setup uses two separate laser sources to detect and excite the oscillation of the cantilever. While the intensity modulation of the excitation laser drives the oscillation of the cantilever, the average intensity can be used to modify the quality factor via optomechanical force without changing the fiber-cantilever cavity length. The technique enables users to optimize the quality factor for different types of measurements without influencing the deflection measurement sensitivity. An unexpected frequency shift was observed and modelled as temperature dependence of the cantilever’s Young’s modulus, which was validated using finite element simulation. The model was used to compensate for the thermal frequency shift. The simulation provided relations between optical power, temperature, and frequency shift.more » « less
-
Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN/s was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites.more » « less
-
Refracto-vibrometry is a technique that uses a laser Doppler vibrometer to measure acoustic pressure fields. The vibrometer laser is directed through a medium towards a stationary retroreflective surface. Acoustic waves (density variations) for which the wavefronts pass through the laser, as the beam travels from the vibrometer to the retroreflector and back, cause variations in the integrated optical path length. This results in a time-varying modulation of the laser signal returning to the vibrometer, enabling optical detection of the acoustic wavefronts. In the current experiment, a Polytec PSV-400 scanning laser Doppler vibrometer, sampled at 100 MHz, monitored the waves emitted by a 1 MHz Panametrics V303 ultrasound transducer immersed in a water tank. The time-varying signal detected by the vibrometer at numerous scan points was used to generate videos of the time evolution of acoustic wavefronts; these videos will be presented. Refracto-vibrometry was also used for optical measurements of the time of flight of ultrasonic waves through different materials, including samples of lead and fabricated bone. This enabled determination of wave propagation speeds. The wave speeds obtained with optical detection using refracto-vibrometry were in agreement with measurements using a conventional ultrasonic transducer to detect the wavefronts.more » « less
An official website of the United States government
