Abstract Reaction of (P)AuOTf [P=P(t‐Bu)2o‐biphenyl] with indenyl‐ or 3‐methylindenyl lithium led to isolation of gold η1‐indenyl complexes (P)Au(η1‐inden‐1‐yl) (1 a) and (P)Au(η1‐3‐methylinden‐1‐yl) (1 b), respectively, in >65 % yield. Whereas complex1 bis static, complex1 aundergoes facile, degenerate 1,3‐migration of gold about the indenyl ligand (ΔG≠153K=9.1±1.1 kcal/mol). Treatment of complexes1 aand1 bwith (P)AuNTf2led to formation of the corresponding cationic bis(gold) indenyl complexestrans‐[(P)Au]2(η1,η1‐inden‐1,3‐yl) (2 a) andtrans‐[(P)Au]2(η1,η2‐3‐methylinden‐1‐yl) (2 b), respectively, which were characterized spectroscopically and modeled computationally. Despite the absence of aurophilic stabilization in complexes2 aand2 b, the binding affinity of mono(gold) complex1 atoward exogenous (P)Au+exceed that of free indene by ~350‐fold and similarly the binding affinity of1 btoward exogenous (P)Au+exceed that of 3‐methylindene by ~50‐fold. The energy barrier for protodeauration of bis(gold) indenyl complex2 awith HOAc was ≥8 kcal/mol higher than for protodeauration of mono(gold) complex1 a.
more »
« less
Can Water Trigger Room‐Temperature Formation of Benzofuran‐2( 3H )‐one Scaffolds From Vinyldiazene Derivatives? Computational Insights Into an Unusual Cyclization
ABSTRACT Access to benzofuran‐2(3H)‐one derivatives from readily available substrates under mild conditions is crucial in the pharmaceutical and plastics industries. We identified (Z)‐3‐(2‐phenylhydrazineylidene)benzofuran‐2(3H)‐one (P) during the recrystallization of (E)‐2‐(2,2‐dichloro‐1‐(phenyldiazenyl)vinyl)phenol using a 96% ethanol solution. The mechanism of the unexpected substrate conversion leading toPis investigated using density functional calculations. The computations revealed that ethanol is required to initiate the reaction viaTS1E, which involves a concerted deprotonation of ethanol by the basic diaza group of the substrate and an ethoxy group attacking the electrophilic center (Cl2C), with an energy barrier of 28.3 kcal/mol. The resulting intermediate (I1E) is calculated to be unstable and can yield a cyclic chloroacetal adduct with a lower energy barrier of 2.2 kcal/mol via the ring‐closure transition state (TS2E). In the absence of water, the next steps are impossible because water is required to cleave the ether bond, yieldingP. A small amount of water (4% of the recrystallization solvent) can promote further transformation ofI2Evia the transition statesTS3E(∆G‡ = 11.1 kcal/mol) andTS4E(∆G‡ = 10.5 kcal/mol). A comparison of the ethanol/water‐ and only water‐promoted free energy profiles shows that the presence of ethanol is crucial for lowering the energy barriers (by about 5 kcal/mol) for the initial two steps leading to the cyclic chloroacetal (I2E), whereas water is then required to initiate product formation.
more »
« less
- Award ID(s):
- 2152633
- PAR ID:
- 10596234
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Computational Chemistry
- Volume:
- 46
- Issue:
- 10
- ISSN:
- 0192-8651
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This computational study explores the copper (I) chloride catalyzed synthesis of (E)‐1‐(2,2‐dichloro‐1‐phenylvinyl)‐2‐phenyldiazene (2Cl‐VD) from readily available hydrazone derivative and carbon tetrachloride (CCl4).2Cl‐VDhas been extensively utilized to synthesize variety of heterocyclic organic compounds in mild conditions. The present computational investigations primarily focus on understanding the role of copper (I) andN1,N1,N2,N2‐tetramethylethane‐1,2‐diamine (TMEDA) in this reaction, TMEDA often being considered a proton scavenger by experimentalists. Considering TMEDA as a ligand significantly alters the energy barrier. In fact, it is only 8.3 kcal/mol higher compared to the ligand‐free (LF) route for the removal of a chlorine atom to form the radical·CCl3but the following steps are almost barrierless. This intermediate then participates in attacking the electrophilic carbon in the hydrazone. Crucially, the study reveals that the overall potential energy surface is thermodynamically favorable, and the theoretical turnover frequency (TOF) value is higher in the case of Cu(I)‐TMEDA complex catalyzed pathway.more » « less
-
Although copper‐catalyzed organic transformations are prevalent, insights into the interactions of phenols with simple copper(II) salts are not well understood. In contrast, inspired by the oxygenase‐type modifications of the phenolic substrates, the reactions of substituted phenols with metastable copper–oxygen intermediates are well documented. The present report sheds light on the reactions of substituted phenols with benchtop stable CuCl2salt and the role of a common base like triethylamine. Moreover, the reactions of substituted phenols with CuCl2in the presence of weakly coordinating tripodalN‐nitrosated ligandL3NOhave been illustrated, while a closely related tripodal copper(II) complexL3HCuCl2(2) of the corresponding non‐nitrosated ligandL3Hdoes not react with the phenolic substrates. Phenol reactions with CuCl2in the presence of theL3NOligand enable in depth mechanistic investigation, thereby illustrating a bimolecular rate law with ΔH‡= 15.13 kcal mol−1, ΔS‡ = −9.6 eu, and kinetic isotope effectk2(ArOH)/k2(ArOD) in the range of 1.35–1.43. Thus, these findings suggest that simple copper(II) salts like CuCl2are capable of facilitating a proton‐coupled electron transfer (PCET) pathway.more » « less
-
Abstract The rotational barrier about the CN carbamate bond ofN‐(4‐hydroxybutyl)‐N‐(2,2,2‐trifluoroethyl)tert‐butyl carbamate1was determined by variable temperature (VT)13C and19F NMR spectroscopy. The −CH2CF3 appendage reports on rotational isomerism and allows for the observation of separate signals for the E‐ and Z‐ensembles at low temperature. The activation barrier for E/Z‐isomerization was quantified using Eyring‐Polanyi theory which requires the measurements of the maximum difference in Larmor frequency Δνmax and the convergence temperature Tc. Both Δνmax and Tc were interpolated by analyzing sigmoidal functions fitted to data describing signal separation and the quality of the superposition of the E‐ and Z‐signals, respectively. Methods for generating the quality‐of‐fit parameters for Lorentzian line shape analysis are discussed. Our best experimental value for the rotational barrier ΔGc≠(1)=15.65±0.13 kcal/mol is compared to results of a higher level ab initio study of the modelN‐ethyl‐N‐(2,2,2‐trifluoroethyl) methyl carbamate.more » « less
-
Abstract We report a series of shape‐persistent molecular nanotubes with top rim connectivity traversing from an all‐meta‐ (m4) to an all‐para‐phenylene (p4) bridged species, including all possible members in between them. Single‐crystal X‐ray diffraction (SCXRD) and microcrystal electron diffraction (MicroED) data show a large torsional angle formeta‐phenylenes relative topara‐phenylene rings. Density functional theory (DFT) calculations reproduce the experimental torsional angles and also establish a correlation indicating a gradual increase in strain energy fromm4(∼31 kcal mol−1) top4(∼90 kcal mol−1). Structural transitions fromm4top4lead to additional correlations such as a shift in the lowest absorption wavelength from 330 to 394 nm, a sizeable red shift in the maximum emission wavelength from 444 to 546 nm, and a decrease in fluorescence quantum yield from 0.76 to 0.20, respectively. Time‐dependent (TD)‐DFT analysis of the relaxed excited state (S1’) geometry shows a progression of exciton delocalization aspara‐phenylenes are introduced intom4en route top4, while the overall molecular size remains constant. This effect is directly related to increased π‐conjugation within the nanotube's top‐segment and demonstrates how exciton trapping can take place without changing the nanotube's physical size, e.g., diameter and length.more » « less
An official website of the United States government

