A large fraction of total healthcare expenditure occurs due to end-of-life (EOL) care, which means it is important to study the problem of more carefully incentivizing necessary versus unnecessary EOL care because this has the potential to reduce overall healthcare spending. This paper introduces a principal-agent model that integrates a mixed payment system of fee-for-service and pay-for-performance in order to analyze whether it is possible to better align healthcare provider incentives with patient outcomes and cost-efficiency in EOL care. The primary contributions are to derive optimal contracts for EOL care payments using a principal-agent framework under three separate models for the healthcare provider, where each model considers a different level of risk tolerance for the provider. We derive these optimal contracts by converting the underlying principal-agent models from a bilevel optimization problem into a single-level optimization problem that can be analytically solved. Our results are demonstrated using a simulation where an optimal contract is used to price intracranial pressure monitoring for traumatic brain injuries.
more »
« less
This content will become publicly available on January 1, 2026
Sequential optimal contracting in continuous time
This paper studies a principal-agent problem in continuous time with multiple lump-sum payments (contracts) paid at different deterministic times. We reduce the non-zero-sum Stackelberg game between the principal and agent to a standard stochastic optimal control problem. We apply our result to a benchmark model to investigate how different inputs (payment frequencies, payment distribution, discounting factors, agent's reservation utility) affect the principal's value and agent's optimal compensations.
more »
« less
- PAR ID:
- 10596337
- Publisher / Repository:
- american institute of mathematical sciences
- Date Published:
- Journal Name:
- Frontiers of Mathematical Finance
- Volume:
- 4
- Issue:
- 0
- ISSN:
- 2769-6715
- Page Range / eLocation ID:
- 114 to 139
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study a ubiquitous learning challenge in online principal-agent problems during which the principal learns the agent's private information from the agent's revealed preferences in historical interactions. This paradigm includes important special cases such as pricing and contract design, which have been widely studied in recent literature. However, existing work considers the case where the principal can only choose a single strategy at every round to interact with the agent and then observe the agent's revealed preference through their actions. In this paper, we extend this line of study to allow the principal to offer a menu of strategies to the agent and learn additionally from observing the agent's selection from the menu. We provide a thorough investigation of several online principal-agent problem settings and characterize their sample complexities, accompanied by the corresponding algorithms we have developed. We instantiate this paradigm to several important design problems — including Stackelberg (security) games, contract design, and information design. Finally, we also explore the connection between our findings and existing results about online learning in Stackelberg games, and we offer a solution that can overcome a key hard instance of previous work.more » « less
-
Guruswami, Venkatesan (Ed.)We study two recent combinatorial contract design models, which highlight different sources of complexity that may arise in contract design, where a principal delegates the execution of a costly project to others. In both settings, the principal cannot observe the choices of the agent(s), only the project’s outcome (success or failure), and incentivizes the agent(s) using a contract, a payment scheme that specifies the payment to the agent(s) upon a project’s success. We present results that resolve open problems and advance our understanding of the computational complexity of both settings. In the multi-agent setting, the project is delegated to a team of agents, where each agent chooses whether or not to exert effort. A success probability function maps any subset of agents who exert effort to a probability of the project’s success. For the family of submodular success probability functions, Dütting et al. [2023] established a poly-time constant factor approximation to the optimal contract, and left open whether this problem admits a PTAS. We answer this question on the negative, by showing that no poly-time algorithm guarantees a better than 0.7-approximation to the optimal contract. For XOS functions, they give a poly-time constant approximation with value and demand queries. We show that with value queries only, one cannot get any constant approximation. In the multi-action setting, the project is delegated to a single agent, who can take any subset of a given set of actions. Here, a success probability function maps any subset of actions to a probability of the project’s success. Dütting et al. [2021a] showed a poly-time algorithm for computing an optimal contract for gross substitutes success probability functions, and showed that the problem is NP-hard for submodular functions. We further strengthen this hardness result by showing that this problem does not admit any constant factor approximation. Furthermore, for the broader class of XOS functions, we establish the hardness of obtaining a n^{-1/2+ε}-approximation for any ε > 0.more » « less
-
We consider a game in which one player (the principal) seeks to incentivize another player (the agent) to exert effort that is costly to the agent. Any effort exerted leads to an outcome that is a stochastic function of the effort. The amount of effort exerted by the agent is private information for the agent and the principal observes only the outcome; thus, the agent can misreport his effort to gain higher payment. Further, the cost function of the agent is also unknown to the principal and the agent can also misreport a higher cost function to gain higher payment for the same effort. We pose the problem as one of contract design when both adverse selection and moral hazard are present. We show that if the principal and agent interact only finitely many times, it is always possible for the agent to lie due to the asymmetric information pattern and claim a higher payment than if he were unable to lie. However, if the principal and agent interact infinitely many times, then the principal can utilize the observed outcomes to update the contract in a manner that reveals the private cost function of the agent and hence leads to the agent not being able to derive any rent. The result can also be interpreted as saying that the agent is unable to keep his information private if he interacts with the principal sufficiently often.more » « less
-
We study the design of a class of incentive mechanisms that can effectively prevent cheating in a strategic classification and regression problem. A conventional strategic classification or regression problem is modeled as a Stackelberg game, or a principal-agent problem between the designer of a classifier (the principal) and individuals subject to the classifier's decisions (the agents), potentially from different demographic groups. The former benefits from the accuracy of its decisions, whereas the latter may have an incentive to game the algorithm into making favorable but erroneous decisions. While prior works tend to focus on how to design an algorithm to be more robust to such strategic maneuvering, this study focuses on an alternative, which is to design incentive mechanisms to shape the utilities of the agents and induce effort that genuinely improves their skills, which in turn benefits both parties in the Stackelberg game. Specifically, the principal and the mechanism provider (which could also be the principal itself) move together in the first stage, publishing and committing to a classifier and an incentive mechanism. The agents are (simultaneous) second movers and best respond to the published classifier and incentive mechanism. When an agent's strategic action merely changes its observable features, it hurts the performance of the algorithm. However, if the action leads to improvement in the agent's true label, it not only helps the agent achieve better decision outcomes, but also preserves the performance of the algorithm. We study how a subsidy mechanism can induce improvement actions, positively impact a number of social well-being metrics, such as the overall skill levels of the agents (efficiency) and positive or true positive rate differences between different demographic groups (fairness).more » « less
An official website of the United States government
