Abstract An ensemble postprocessing method is developed for the probabilistic prediction of severe weather (tornadoes, hail, and wind gusts) over the conterminous United States (CONUS). The method combines conditional generative adversarial networks (CGANs), a type of deep generative model, with a convolutional neural network (CNN) to postprocess convection-allowing model (CAM) forecasts. The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts, and their outputs are processed by the CNN to estimate the probability of severe weather. The method is tested using High-Resolution Rapid Refresh (HRRR) 1–24-h forecasts as inputs and Storm Prediction Center (SPC) severe weather reports as targets. The method produced skillful predictions with up to 20% Brier skill score (BSS) increases compared to other neural-network-based reference methods using a testing dataset of HRRR forecasts in 2021. For the evaluation of uncertainty quantification, the method is overconfident but produces meaningful ensemble spreads that can distinguish good and bad forecasts. The quality of CGAN outputs is also evaluated. Results show that the CGAN outputs behave similarly to a numerical ensemble; they preserved the intervariable correlations and the contribution of influential predictors as in the original HRRR forecasts. This work provides a novel approach to postprocess CAM output using neural networks that can be applied to severe weather prediction. Significance StatementWe use a new machine learning (ML) technique to generate probabilistic forecasts of convective weather hazards, such as tornadoes and hailstorms, with the output from high-resolution numerical weather model forecasts. The new ML system generates an ensemble of synthetic forecast fields from a single forecast, which are then used to train ML models for convective hazard prediction. Using this ML-generated ensemble for training leads to improvements of 10%–20% in severe weather forecast skills compared to using other ML algorithms that use only output from the single forecast. This work is unique in that it explores the use of ML methods for producing synthetic forecasts of convective storm events and using these to train ML systems for high-impact convective weather prediction. 
                        more » 
                        « less   
                    This content will become publicly available on April 1, 2026
                            
                            Improving Ensemble Extreme Precipitation Forecasts Using Generative Artificial Intelligence
                        
                    
    
            Abstract An ensemble postprocessing method is developed to improve the probabilistic forecasts of extreme precipitation events across the conterminous United States (CONUS). The method combines a 3D vision transformer (ViT) for bias correction with a latent diffusion model (LDM), a generative artificial intelligence (AI) method, to postprocess 6-hourly precipitation ensemble forecasts and produce an enlarged generative ensemble that contains spatiotemporally consistent precipitation trajectories. These trajectories are expected to improve the characterization of extreme precipitation events and offer skillful multiday accumulated and 6-hourly precipitation guidance. The method is tested using the Global Ensemble Forecast System (GEFS) precipitation forecasts out to day 6 and is verified against the Climatology-Calibrated Precipitation Analysis (CCPA) data. Verification results indicate that the method generated skillful ensemble members with improved continuous ranked probabilistic skill scores (CRPSSs) and Brier skill scores (BSSs) over the raw operational GEFS and a multivariate statistical postprocessing baseline. It showed skillful and reliable probabilities for events at extreme precipitation thresholds. Explainability studies were further conducted, which revealed the decision-making process of the method and confirmed its effectiveness on ensemble member generation. This work introduces a novel, generative AI–based approach to address the limitation of small numerical ensembles and the need for larger ensembles to identify extreme precipitation events. Significance StatementWe use a new artificial intelligence (AI) technique to improve extreme precipitation forecasts from a numerical weather prediction ensemble, generating more scenarios that better characterize extreme precipitation events. This AI-generated ensemble improved the accuracy of precipitation forecasts and probabilistic warnings for extreme precipitation events. The study explores AI methods to generate precipitation forecasts and explains the decision-making mechanisms of such AI techniques to prove their effectiveness. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2019758
- PAR ID:
- 10596345
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Artificial Intelligence for the Earth Systems
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2769-7525
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)The use of hydro-meteorological forecasts in water resources management holds great promise as a soft pathway to improve system performance. Methods for generating synthetic forecasts of hydro-meteorological variables are crucial for robust validation of forecast use, as numerical weather prediction hindcasts are only available for a relatively short period (10–40 years) that is insufficient for assessing risk related to forecast-informed decision-making during extreme events. We develop a generalized error model for synthetic forecast generation that is applicable to a range of forecasted variables used in water resources management. The approach samples from the distribution of forecast errors over the available hindcast period and adds them to long records of observed data to generate synthetic forecasts. The approach utilizes the Skew Generalized Error Distribution (SGED) to model marginal distributions of forecast errors that can exhibit heteroskedastic, auto-correlated, and non-Gaussian behavior. An empirical copula is used to capture covariance between variables, forecast lead times, and across space. We demonstrate the method for medium-range forecasts across Northern California in two case studies for (1) streamflow and (2) temperature and precipitation, which are based on hindcasts from the NOAA/NWS Hydrologic Ensemble Forecast System (HEFS) and the NCEP GEFS/R V2 climate model, respectively. The case studies highlight the flexibility of the model and its ability to emulate space-time structures in forecasts at scales critical for water resources management. The proposed method is generalizable to other locations and computationally efficient, enabling fast generation of long synthetic forecast ensembles that are appropriate for risk analysis.more » « less
- 
            Abstract A primary goal of the National Oceanic and Atmospheric Administration Warn-on-Forecast (WoF) project is to provide rapidly updating probabilistic guidance to human forecasters for short-term (e.g., 0–3 h) severe weather forecasts. Postprocessing is required to maximize the usefulness of probabilistic guidance from an ensemble of convection-allowing model forecasts. Machine learning (ML) models have become popular methods for postprocessing severe weather guidance since they can leverage numerous variables to discover useful patterns in complex datasets. In this study, we develop and evaluate a series of ML models to produce calibrated, probabilistic severe weather guidance from WoF System (WoFS) output. Our dataset includes WoFS ensemble forecasts available every 5 min out to 150 min of lead time from the 2017–19 NOAA Hazardous Weather Testbed Spring Forecasting Experiments (81 dates). Using a novel ensemble storm-track identification method, we extracted three sets of predictors from the WoFS forecasts: intrastorm state variables, near-storm environment variables, and morphological attributes of the ensemble storm tracks. We then trained random forests, gradient-boosted trees, and logistic regression algorithms to predict which WoFS 30-min ensemble storm tracks will overlap a tornado, severe hail, and/or severe wind report. To provide rigorous baselines against which to evaluate the skill of the ML models, we extracted the ensemble probabilities of hazard-relevant WoFS variables exceeding tuned thresholds from each ensemble storm track. The three ML algorithms discriminated well for all three hazards and produced more reliable probabilities than the baseline predictions. Overall, the results suggest that ML-based postprocessing of dynamical ensemble output can improve short-term, storm-scale severe weather probabilistic guidance.more » « less
- 
            null (Ed.)Abstract In this study, seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), are compared with station observations to assess their usefulness in producing accurate buildup index (BUI) forecasts for the fire season in Interior Alaska. These comparisons indicate that the CFSv2 June–July–August (JJA) climatology (1994–2017) produces negatively biased BUI forecasts because of negative temperature and positive precipitation biases. With quantile mapping (QM) correction, the temperature and precipitation forecasts better match the observations. The long-term JJA mean BUI improves from 12 to 42 when computed using the QM-corrected forecasts. Further postprocessing of the QM-corrected BUI forecasts using the quartile classification method shows anomalously high values for the 2004 fire season, which was the worst on record in terms of the area burned by wildfires. These results suggest that the QM-corrected CFSv2 forecasts can be used to predict extreme fire events. An assessment of the classified BUI ensemble members at the subseasonal scale shows that persistently occurring BUI forecasts exceeding 150 in the cumulative drought season can be used as an indicator that extreme fire events will occur during the upcoming season. This study demonstrates the ability of QM-corrected CFSv2 forecasts to predict the potential fire season in advance. This information could, therefore, assist fire managers in resource allocation and disaster response preparedness.more » « less
- 
            Abstract Producing high-quality forecasts of key climate variables, such as temperature and precipitation, on subseasonal time scales has long been a gap in operational forecasting. This study explores an application of machine learning (ML) models as postprocessing tools for subseasonal forecasting. Lagged numerical ensemble forecasts (i.e., an ensemble where the members have different initialization dates) and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods to predict monthly average precipitation and 2-m temperature 2 weeks in advance for the continental United States. For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models (a multimodel approach based on the prediction of the individual ML models). Unlike previous ML approaches that often use ensemble mean alone, we leverage information embedded in the ensemble forecasts to enhance prediction accuracy. Additionally, we investigate extreme event predictions that are crucial for planning and mitigation efforts. Considering ensemble members as a collection of spatial forecasts, we explore different approaches to using spatial information. Trade-offs between different approaches may be mitigated with model stacking. Our proposed models outperform standard baselines such as climatological forecasts and ensemble means. In addition, we investigate feature importance, trade-offs between using the full ensemble or only the ensemble mean, and different modes of accounting for spatial variability. Significance StatementAccurately forecasting temperature and precipitation on subseasonal time scales—2 weeks–2 months in advance—is extremely challenging. These forecasts would have immense value in agriculture, insurance, and economics. Our paper describes an application of machine learning techniques to improve forecasts of monthly average precipitation and 2-m temperature using lagged physics-based predictions and observational data 2 weeks in advance for the entire continental United States. For lagged ensembles, the proposed models outperform standard benchmarks such as historical averages and averages of physics-based predictions. Our findings suggest that utilizing the full set of physics-based predictions instead of the average enhances the accuracy of the final forecast.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
