Abstract Winter Arctic sea-ice concentration (SIC) decline plays an important role in Arctic amplification which, in turn, influences Arctic ecosystems, midlatitude weather and climate. SIC over the Barents-Kara Seas (BKS) shows large interannual variations, whose origin is still unclear. Here we find that interannual variations in winter BKS SIC have significantly strengthened in recent decades likely due to increased amplitudes of the El Niño-Southern Oscillation (ENSO) in a warming climate. La Niña leads to enhanced Atlantic Hadley cell and a positive phase North Atlantic Oscillation-like anomaly pattern, together with concurring Ural blocking, that transports Atlantic ocean heat and atmospheric moisture toward the BKS and promotes sea-ice melting via intensified surface warming. The reverse is seen during El Niño which leads to weakened Atlantic poleward transport and an increase in the BKS SIC. Thus, interannual variability of the BKS SIC partly originates from ENSO via the Atlantic pathway.
more »
« less
Large-Scale Climate Modes Drive Low-Frequency Regional Arctic Sea Ice Variability
Abstract Summer Arctic sea ice is declining rapidly but with superimposed variability on multiple time scales that introduces large uncertainties in projections of future sea ice loss. To better understand what drives at least part of this variability, we show how a simple linear model can link dominant modes of climate variability to low-frequency regional Arctic sea ice concentration (SIC) anomalies. Focusing on September, we find skillful projections from global climate models (GCMs) from phase 6 of the Coupled Model Intercomparison Project (CMIP6) at lead times of 4–20 years, with up to 60% of observed low-frequency variability explained at a 5-yr lead time. The dominant driver of low-frequency SIC variability is the interdecadal Pacific oscillation (IPO) which is positively correlated with SIC anomalies in all regions up to a lead time of 15 years but with large uncertainty between GCMs and internal variability realization. The Niño-3.4 index and Atlantic multidecadal oscillation have better agreement between GCMs of being positively and negatively related, respectively, with low-frequency SIC anomalies for at least 10-yr lead times. The large variations between GCMs and between members within large ensembles indicate the diverse simulation of teleconnections between the tropics and Arctic sea ice and the dependence on the initial climate state. Further, the influence of the Niño-3.4 index was found to be sensitive to the background climate. Our results suggest that, based on the 2022 phases of dominant climate variability modes, enhanced loss of sea ice area across the Arctic is likely during the next decade. Significance StatementThe purpose of this study is to better understand the drivers of low-frequency variability of Arctic sea ice. Teasing out the complicated relationships within the climate system takes a large number of examples. Here, we use 42 of the latest generation of global climate models to construct a simple linear model based on dominant named climate features to predict regional low-frequency sea ice anomalies at a lead time of 2–20 years. In 2022, these modes of variability happen to be in the phases most conducive to low Arctic sea ice concentration anomalies. Given the context of the longer-term trend of sea ice loss due to global warming, our results suggest accelerated Arctic sea ice loss in the next decade.
more »
« less
- Award ID(s):
- 1847398
- PAR ID:
- 10596588
- Publisher / Repository:
- Journal of Climate
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 37
- Issue:
- 16
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 4313 to 4333
- Subject(s) / Keyword(s):
- Arctic sea ice
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Internal climate variability confounds estimates of the climate response to forcing but offers an opportunity to examine the dynamics controlling Earth’s energy budget. This study analyzes the time-evolving impact of modes of low-frequency internal variability on global-mean surface temperature (GMST) and top-of-atmosphere (TOA) radiation in preindustrial control simulations from phase 6 of the Coupled Model Intercomparison Project (CMIP6). The results show that the slow modes of variability with the largest impact on decadal GMST anomalies are focused in high-latitude ocean regions, where they have a minimal impact on global TOA radiation. When these regions warm, positive shortwave cloud and sea ice–albedo feedbacks largely cancel the negative feedback of outgoing longwave radiation, resulting in a weak net radiative feedback. As a consequence of the weak net radiative feedback, less energy is required to sustain these long-lived temperature anomalies. In contrast to these weakly radiating high-latitude modes, El Niño–Southern Oscillation (ENSO) has a large impact on the global energy budget, such that it remains the dominant influence on global TOA radiation out to decadal and longer time scales, despite its primarily interannual time scale. These results show that on decadal and longer time scales, different processes control internal variability in GMST than control internal variability in global TOA radiation. The results are used to quantify the impact of low-frequency internal variability and ENSO on estimates of climate sensitivity from historical GMST and TOA-radiative-imbalance anomalies.more » « less
-
Abstract. The main drivers of the continental Northern Hemisphere snow cover are investigated in the 1979–2014 period. Four observational datasets are usedas are two large multi-model ensembles of atmosphere-only simulations with prescribed sea surface temperature (SST) and sea ice concentration (SIC). Afirst ensemble uses observed interannually varying SST and SIC conditions for 1979–2014, while a second ensemble is identical except for SIC witha repeated climatological cycle used. SST and external forcing typically explain 10 % to 25 % of the snow cover variance in modelsimulations, with a dominant forcing from the tropical and North Pacific SST during this period. In terms of the climate influence of the snow coveranomalies, both observations and models show no robust links between the November and April snow cover variability and the atmospheric circulation1 month later. On the other hand, the first mode of Eurasian snow cover variability in January, with more extended snow over western Eurasia, isfound to precede an atmospheric circulation pattern by 1 month, similar to a negative Arctic oscillation (AO). A decomposition of the variabilityin the model simulations shows that this relationship is mainly due to internal climate variability. Detailed outputs from one of the modelsindicate that the western Eurasia snow cover anomalies are preceded by a negative AO phase accompanied by a Ural blocking pattern and astratospheric polar vortex weakening. The link between the AO and the snow cover variability is strongly related to the concomitant role of thestratospheric polar vortex, with the Eurasian snow cover acting as a positive feedback for the AO variability in winter. No robust influence of theSIC variability is found, as the sea ice loss in these simulations only drives an insignificant fraction of the snow cover anomalies, with fewagreements among models.more » « less
-
Abstract The observed winter Barents-Kara Sea (BKS) sea ice concentration (SIC) has shown a close association with the second empirical orthogonal function (EOF) mode of Eurasian winter surface air temperature (SAT) variability, known as Warm Arctic Cold Eurasia (WACE) pattern. However, the potential role of BKS SIC on this WACE pattern of variability and on its long-term trend remains elusive. Here, we show that from 1979 to 2022, the winter BKS SIC and WACE association is most prominent and statistically significant for the variability at the sub-decadal time scale for 5–6 years. We also show the critical role of the multi-decadal trend in the principal component of the WACE mode of variability for explaining the overall Eurasian winter temperature trend over the same period. Furthermore, a large multi-model ensemble of atmosphere-only experiments from 1979 to 2014, with and without the observed Arctic SIC forcing, suggests that the BKS SIC variations induce this observed sub-decadal variability and the multi-decadal trend in the WACE. Additionally, we analyse the model simulated first or the leading EOF mode of Eurasian winter SAT variability, which in observations, closely relates to the Arctic Oscillation (AO). We find a weaker association of this mode to AO and a statistically significant positive trend in our ensemble simulation, opposite to that found in observation. This contrasting nature reflects excessive hemispheric warming in the models, partly contributed by the modelled Arctic Sea ice loss.more » « less
-
Abstract Future Arctic sea ice loss has a known impact on Arctic amplification (AA) and mean atmospheric circulation. Furthermore, several studies have shown it leads to a decreased variance in temperature over North America. In this study, we analyze results from two fully coupled Community Earth System Model (CESM) Whole Atmosphere Community Climate Model (WACCM4) simulations with sea ice nudged to either the ensemble mean of WACCM historical runs averaged over the 1980–99 period for the control (CTL) or projected RCP8.5 values over the 2080–99 period for the experiment (EXP). Dominant large-scale meteorological patterns (LSMPs) are then identified using self-organizing maps applied to winter daily 500-hPa geopotential height anomalies () over North America. We investigate how sea ice loss (EXP − CTL) impacts the frequency of these LSMPs and, through composite analysis, the sensible weather associated with them. We find differences in LSMP frequency but no change in residency time, indicating there is no stagnation of the flow with sea ice loss. Sea ice loss also acts to de-amplify and/or shift thethat characterize these LSMPs and their associated anomalies in potential temperature at 850 hPa. Impacts on precipitation anomalies are more localized and consistent with changes in anomalous sea level pressure. With this LSMP framework we provide new mechanistic insights, demonstrating a role for thermodynamic, dynamic, and diabatic processes in sea ice impacts on atmospheric variability. Understanding these processes from a synoptic perspective is critical as some LSMPs play an outsized role in producing the mean response to Arctic sea ice loss. Significance StatementThe goal of this study is to understand how future Arctic sea ice loss might impact daily weather patterns over North America. We use a global climate model to produce one set of simulations where sea ice is similar to present conditions and another that represents conditions at the end of the twenty-first century. Daily patterns in large-scale circulation at roughly 5.5 km in altitude are then identified using a machine learning method. We find that sea ice loss tends to de-amplify these patterns and their associated impacts on temperature nearer the surface. Our methodology allows us to probe more deeply into the mechanisms responsible for these changes, which provides a new way to understand how sea ice loss can impact the daily weather we experience.more » « less
An official website of the United States government

