skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Algebraic relations between solutions of Painlevé equations
Abstract In this manuscript, we make major progress classifying algebraic relations between solutions of Painlevé equations. Our main contribution is to establish the algebraic independence of solutions of various pairs of equations in the Painlevé families; for generic coefficients, we show that all algebraic relations between solutions of equations in the same Painlevé family come from classically studied Bäcklund transformations. We also apply our analysis of ranks to establish some transcendence results for pairs of Painlevé equations from different families. In that area, we answer several open questions of Nagloo, and in the process answer a question of Boalch. We calculate model‐theoretic ranks of all Painlevé equations in this article, extending results of Nagloo and Pillay. We show that the type of the generic solution of any equation in the second Painlevé family is geometrically trivial, extending a result of Nagloo. We give the first model‐theoretic analysis of several special families of the third Painlevé equation, proving results analogous to Nagloo and Pillay. We also give a novel new proof of the irreducibility of the third, fifth, and sixth Painlevé equations using recent work of Freitag, Jaoui, and Moosa. Our proof is fundamentally different from the existing transcendence proofs by Watanabe, Cantat and Loray, or Casale and Weil.  more » « less
Award ID(s):
2203508 2348885 2054471
PAR ID:
10596696
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Oxford University Press (OUP)
Date Published:
Journal Name:
Journal of the London Mathematical Society
Volume:
111
Issue:
6
ISSN:
0024-6107
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We prove the Ax-Lindemann-Weierstrass theorem with derivatives for the uniformizing functions of genus zero Fuchsian groups of the first kind. Our proof relies on differential Galois theory, monodromy of linear differential equations, the study of algebraic and Liouvillian solutions, differential algebraic work of Nishioka towards the Painlevé irreducibility of certain Schwarzian equations, and considerable machinery from the model theory of differentially closed fields. Our techniques allow for certain generalizations of the Ax-Lindemann-Weierstrass theorem that have interesting consequences. In particular, we apply our results to give a complete proof of an assertion of Painlevé (1895). We also answer certain cases of the André-Pink conjecture, namely, in the case of orbits of commensurators of Fuchsian groups. 
    more » « less
  2. The third Painlevé equation in its generic form, often referred to as Painlevé-III($$D_6$$), is given by $$ \frac{{\rm d}^2u}{{\rm d}x^2} =\frac{1}{u}\left(\frac{{\rm d}u}{{\rm d}x} \right)^2-\frac{1}{x} \frac{{\rm d}u}{{\rm d}x} + \frac{\alpha u^2 + \beta}{x}+4u^3-\frac{4}{u}, \qquad \alpha,\beta \in \mathbb C. $$ Starting from a generic initial solution $$u_0(x)$$ corresponding to parameters $$\alpha$$, $$\beta$$, denoted as the triple $$(u_0(x),\alpha,\beta)$$, we apply an explicit Bäcklund transformation to generate a family of solutions $$(u_n(x),\alpha + 4n,\beta + 4n)$$ indexed by $$n \in \mathbb N$$. We study the large $$n$$ behavior of the solutions $$(u_n(x), \alpha + 4n, \beta + 4n)$$ under the scaling $x = z/n$ in two different ways: (a) analyzing the convergence properties of series solutions to the equation, and (b) using a Riemann-Hilbert representation of the solution $$u_n(z/n)$$. Our main result is a proof that the limit of solutions $$u_n(z/n)$$ exists and is given by a solution of the degenerate Painlevé-III equation, known as Painlevé-III($$D_8$$), $$ \frac{{\rm d}^2U}{{\rm d}z^2} =\frac{1}{U}\left(\frac{{\rm d}U}{{\rm d}z}\right)^2-\frac{1}{z} \frac{{\rm d}U}{{\rm d}z} + \frac{4U^2 + 4}{z}.$$ A notable application of our result is to rational solutions of Painlevé-III($$D_6$$), which are constructed using the seed solution $(1,4m,-4m)$ where $$m \in \mathbb C \setminus \big(\mathbb Z + \frac{1}{2}\big)$$ and can be written as a particular ratio of Umemura polynomials. We identify the limiting solution in terms of both its initial condition at $z = 0$ when it is well defined, and by its monodromy data in the general case. Furthermore, as a consequence of our analysis, we deduce the asymptotic behavior of generic solutions of Painlevé-III, both $$D_6$$ and $$D_8$$ at $z = 0$. We also deduce the large $$n$$ behavior of the Umemura polynomials in a neighborhood of $z = 0$. 
    more » « less
  3. It is well known that the Painlevé equations can formally degenerate to autonomous differential equations with elliptic function solutions in suitable scaling limits. A way to make this degeneration rigorous is to apply Deift-Zhou steepest-descent techniques to a Riemann-Hilbert representation of a family of solutions. This method leads to an explicit approximation formula in terms of theta functions and related algebro-geometric ingredients that is difficult to directly link to the expected limiting differential equation. However, the approximation arises from an outer parametrix that satisfies relatively simple conditions. By applying a method that we learned from Alexander Its, it is possible to use these simple conditions to directly obtain the limiting differential equation, bypassing the details of the algebro-geometric solution of the outer parametrix problem. In this paper, we illustrate the use of this method to relate an approximation of the algebraic solutions of the Painlevé-III (D$$_7$$) equation valid in the part of the complex plane where the poles and zeros of the solutions asymptotically reside to a form of the Weierstraß equation. 
    more » « less
  4. null (Ed.)
    Abstract We establish several finiteness properties of groups defined by algebraic difference equations. One of our main results is that a subgroup of the general linear group defined by possibly infinitely many algebraic difference equations in the matrix entries can indeed be defined by finitely many such equations. As an application, we show that the difference ideal of all difference algebraic relations among the solutions of a linear differential equation is finitely generated. 
    more » « less
  5. Motivated by the search for methods to establish strong minimality of certain low order algebraic differential equations, a measure of how far a finite rank stationary type is from being minimal is introduced and studied: Thedegree of nonminimalityis the minimum number of realisations of the type required to witness a nonalgebraic forking extension. Conditional on the truth of a conjecture of Borovik and Cherlin on the generic multiple-transitivity of homogeneous spaces definable in the stable theory being considered, it is shown that the nonminimality degree is bounded by theU-rank plus 2. The Borovik–Cherlin conjecture itself is verified for algebraic and meromorphic group actions, and a bound ofU-rank plus 1 is then deduced unconditionally for differentially closed fields and compact complex manifolds. An application is given regarding transcendence of solutions to algebraic differential equations. 
    more » « less