StarvingMyxococcus xanthusbacteria use short-range C-signaling to coordinate their movements and construct multicellular mounds, which mature into fruiting bodies as rods differentiate into spherical spores. Differentiation requires efficient C-signaling to drive the expression of developmental genes, but how the arrangement of cells within nascent fruiting bodies (NFBs) affects C-signaling is not fully understood. Here, we used confocal microscopy and cell segmentation to visualize and quantify the arrangement, morphology, and gene expression of cells near the bottom of NFBs at much higher resolution than previously achieved. We discovered that “transitioning cells” (TCs), intermediate in morphology between rods and spores, comprised 10 to 15% of the total population. Spores appeared midway between the center and the edge of NFBs early in their development and near the center as maturation progressed. The developmental pattern, as well as C-signal–dependent gene expression in TCs and spores, were correlated with cell density, the alignment of neighboring rods, and the tangential orientation of rods early in the development of NFBs. These dynamic radial patterns support a model in which the arrangement of cells within the NFBs affects C-signaling efficiency to regulate precisely the expression of developmental genes and cellular differentiation in space and time. Developmental patterns in other bacterial biofilms may likewise rely on short-range signaling to communicate multiple aspects of cellular arrangement, analogous to juxtacrine and paracrine signaling during animal development.
more »
« less
Short-range C-signaling restricts cheating behavior during Myxococcus xanthus development
ABSTRACT Myxococcus xanthususes short-range C-signaling to coordinate multicellular mound formation with sporulation during fruiting body development. AcsgAmutant deficient in C-signaling can cheat on wild type (WT) in mixtures and form spores disproportionately, but our understanding of cheating behavior is incomplete. We subjected mixtures of WT andcsgAcells at different ratios to co-development and used confocal microscopy and image analysis to quantify the arrangement and morphology of cells. At a ratio of one WT to fourcsgAcells (1:4), mounds failed to form. At 1:2, only a few mounds and spores formed. At 1:1, mounds formed with a similar number and arrangement of WT andcsgArods early in development, but later the number ofcsgAspores near the bottom of these nascent fruiting bodies (NFBs) exceeded that of WT. This cheating after mound formation involvedcsgAforming spores at a greater rate, while WT disappeared at a greater rate, either lysing or exiting NFBs. At 2:1 and 4:1,csgArods were more abundant than expected throughout the biofilm both before and during mound formation, and cheating continued after mound formation. We conclude that C-signaling restricts cheating behavior by requiring sufficient WT cells in mixtures. Excess cheaters may interfere with positive feedback loops that depend on the cellular arrangement to enhance C-signaling during mound building. Since long-range signaling could not likewise communicate the cellular arrangement, we propose that C-signaling was favored evolutionarily and that other short-range signaling mechanisms provided selective advantages in bacterial biofilm and multicellular animal development. IMPORTANCEBacteria communicate using both long- and short-range signals. Signaling affects community composition, structure, and function. Adherent communities called biofilms impact medicine, agriculture, industry, and the environment. To facilitate the manipulation of biofilms for societal benefits, a better understanding of short-range signaling is necessary. We investigated the susceptibility of short-range C-signaling to cheating duringMyxococcus xanthusbiofilm development. A mutant deficient in C-signaling fails to form mounds containing spores (i.e., fruiting bodies) but cheats on C-signaling by wild type in starved cell mixtures and forms spores disproportionately. We found that cheating requires sufficient wild-type cells in the initial mix and can occur both before mound formation and later during the sporulation stage of development. By restricting cheating behavior, short-range C-signaling may have been favored evolutionarily rather than long-range diffusible signaling. Cheating restrictions imposed by short-range signaling may have likewise driven the evolution of multicellularity broadly.
more »
« less
- Award ID(s):
- 1951025
- PAR ID:
- 10596790
- Editor(s):
- Søgaard-Andersen, Lotte
- Publisher / Repository:
- American Society for Microbiology
- Date Published:
- Journal Name:
- mBio
- Volume:
- 15
- Issue:
- 11
- ISSN:
- 2150-7511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IntroductionMrpC, a member of the CRP/Fnr transcription factor superfamily, is necessary to induce and control the multicellular developmental program of the bacterium,Myxococcus xanthus. During development, certain cells in the population first swarm into haystack-shaped aggregates and then differentiate into environmentally resistant spores to form mature fruiting bodies (a specialized biofilm).mrpCtranscriptional regulation is controlled by negative autoregulation (NAR). MethodsWild type and mutantmrpCpromoter regions were fused to a fluorescent reporter to examine effects onmrpCexpression in the population and in single cellsin situ. Phenotypic consequences of the mutantmrpCpromoter were assayed by deep convolution neural network analysis of developmental movies, sporulation efficiency assays, and anti-MrpC immunoblot. In situ analysis of single cell MrpC levels in distinct populations were assayed with an MrpC-mNeonGreen reporter. ResultsDisruption of MrpC binding sites within themrpCpromoter region led to increased and broadened distribution ofmrpCexpression levels between individual cells in the population. Expression ofmrpCfrom the mutant promoter led to a striking phenotype in which cells lose synchronized transition from aggregation to sporulation. Instead, some cells abruptly exit aggregation centers and remain locked in a cohesive swarming state we termed developmental swarms, while the remaining cells transition to spores inside residual fruiting bodies.In situexamination of a fluorescent reporter for MrpC levels in developmental subpopulations demonstrated cells locked in the developmental swarms contained MrpC levels that do not reach the levels observed in fruiting bodies. DiscussionIncreased cell-to-cell variation inmrpCexpression upon disruption of MrpC binding sites within its promoter is consistent with NAR motifs functioning to reducing noise. Noise reduction may be key to synchronized transition of cells in the aggregation state to the sporulation state. We hypothesize a novel subpopulation of cells trapped as developmental swarms arise from intermediate levels of MrpC that are sufficient to promote aggregation but insufficient to trigger sporulation. Failure to transition to higher levels of MrpC necessary to induce sporulation may indicate cells in developmental swarms lack an additional positive feedback signal required to boost MrpC levels.more » « less
-
Glass, Jennifer B (Ed.)ABSTRACT Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores.Myxococcus xanthusare ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium,Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions.more » « less
-
Rodríguez-Verdugo, Alejandra (Ed.)ABSTRACT The soil bacteriumMyxococcus xanthusis a model organism with a set of diverse behaviors. These behaviors include the starvation-induced multicellular development program, in which cells move collectively to assemble multicellular aggregates. After initial aggregates have formed, some will disperse, with smaller aggregates having a higher chance of dispersal. Initial aggregation is driven by two changes in cell behavior: cells slow down inside of aggregates and bias their motion by reversing direction less frequently when moving toward aggregates. However, the cell behaviors that drive dispersal are unknown. Here, we use fluorescent microscopy to quantify changes in cell behavior after initial aggregates have formed. We observe that after initial aggregate formation, cells adjust the bias in reversal timings by initiating reversals more rapidly when approaching unstable aggregates. Using agent-based modeling, we then show dispersal is predominantly generated by this change in bias, which is strong enough to overcome slowdown inside aggregates. Notably, the change in reversal bias is correlated with the nearest aggregate size, connecting cellular activity to previously observed correlations between aggregate size and fate. To determine if this connection is consistent across strains, we analyze a secondM. xanthusstrain with reduced levels of dispersal. We find that far fewer cells near smaller aggregates modified their bias. This implies that aggregate dispersal is under genetic control, providing a foundation for further investigations into the role it plays in the life cycle ofM. xanthus. IMPORTANCEUnderstanding the processes behind bacterial biofilm formation, maintenance, and dispersal is essential for addressing their effects on health and ecology. Within these multicellular communities, various cues can trigger differentiation into distinct cell types, allowing cells to adapt to their specific local environment. The soil bacteriumMyxococcus xanthusforms biofilms in response to starvation, marked by cells aggregating into mounds. Some aggregates persist as spore-filled fruiting bodies, while others disperse after initial formation for unknown reasons. Here, we use a combination of cell tracking analysis and computational simulations to identify behaviors at the cellular level that contribute to aggregate dispersal. Our results suggest that cells in aggregates actively determine whether to disperse or persist and undergo a transition to sporulation based on a self-produced cue related to the aggregate size. Identifying these cues is an important step in understanding and potentially manipulating bacterial cell-fate decisions.more » « less
-
ABSTRACT Single mutations frequently alter several aspects of cell behavior but rarely reveal whether a particular statistically significant change is biologically significant. To determine which behavioral changes are most important for multicellular self-organization, we devised a new methodology using Myxococcus xanthus as a model system. During development, myxobacteria coordinate their movement to aggregate into spore-filled fruiting bodies. We investigate how aggregation is restored in two mutants, csgA and pilC , that cannot aggregate unless mixed with wild-type (WT) cells. To this end, we use cell tracking to follow the movement of fluorescently labeled cells in combination with data-driven agent-based modeling. The results indicate that just like WT cells, both mutants bias their movement toward aggregates and reduce motility inside aggregates. However, several aspects of mutant behavior remain uncorrected by WT, demonstrating that perfect recreation of WT behavior is unnecessary. In fact, synergies between errant behaviors can make aggregation robust. IMPORTANCE Self-organization into spatial patterns is evident in many multicellular phenomena. Even for the best-studied systems, our ability to dissect the mechanisms driving coordinated cell movement is limited. While genetic approaches can identify mutations perturbing multicellular patterns, the diverse nature of the signaling cues coupled to significant heterogeneity of individual cell behavior impedes our ability to mechanistically connect genes with phenotype. Small differences in the behaviors of mutant strains could be irrelevant or could sometimes lead to large differences in the emergent patterns. Here, we investigate rescue of multicellular aggregation in two mutant strains of Myxococcus xanthus mixed with wild-type cells. The results demonstrate how careful quantification of cell behavior coupled to data-driven modeling can identify specific motility features responsible for cell aggregation and thereby reveal important synergies and compensatory mechanisms. Notably, mutant cells do not need to precisely recreate wild-type behaviors to achieve complete aggregation.more » « less
An official website of the United States government

