Two-dimensional (2D) molybdenum disulfide (MoS2) holds immense promise for next-generation electronic applications. However, the role of contact deposition at the metal/semiconductor interface remains a critical factor influencing device performance. This study investigates the impact of different metal deposition techniques, specifically electron-beam evaporation and sputtering, for depositing Cu, Pd, Bi, Sn, Pt, and In. Utilizing Raman spectroscopy with backside illumination, we observe changes at the buried metal/1L MoS2 interface after metal deposition. Sputter deposition causes more damage to monolayer MoS2 than electron-beam evaporation, as indicated by partial or complete disappearance of first-order E′(Γ)α and A′1(Γ)α Raman modes post-deposition. We correlated the degree of damage from sputtered atoms to the cohesive energies of the sputtered material. Through fabrication and testing of field-effect transistors, we demonstrate that electron-beam evaporated Sn/Au contacts exhibit superior performance including reduced contact resistance (~12×), enhanced mobility (~4.3×), and lower subthreshold slope (~0.6×) compared to their sputtered counterparts. Our findings underscore the importance of contact fabrication methods for optimizing the performance of 2D MoS2 devices and the value of Raman spectroscopy with backside illumination for gaining insight into contact performance.
more »
« less
One-dimensional edge contact to encapsulated MoS2 with a superconductor
Establishing ohmic contact to van der Waals semiconductors such as MoS2 is crucial to unlocking their full potential in next-generation electronic devices. Encapsulation of few layer MoS2 with hBN preserves the material’s electronic properties but makes electrical contacts more challenging. Progress toward high quality edge contact to encapsulated MoS2 has been recently reported. Here, we evaluate a contact methodology using sputtered MoRe, a type II superconductor with a relatively high critical field and temperature commonly used to induce superconductivity in graphene. We find that the contact transparency is poor and that the devices do not support a measurable supercurrent down to 3 K, which has ramifications for future fabrication recipes.
more »
« less
- PAR ID:
- 10597288
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 11
- Issue:
- 4
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The interface properties and thermal stability of bismuth (Bi) contacts on molybdenum disulfide (MoS2) shed light on their behavior under various deposition conditions and temperatures. The examination involves extensive techniques including X-ray photoelectron spectroscopy, scanning tunneling microscopy (STM), and scanning tunneling spectroscopy (STS). Bi contacts formed a van der Waals interface on MoS2 regardless of deposition conditions, such as ultrahigh vacuum (UHV, 3 × 10–11 mbar) and high vacuum (HV, 4 × 10–6 mbar), while the oxidation on MoS2 has been observed. However, the semimetallic properties of Bi suppress the impact of defect states, including oxidized-MoS2 and vacancies. Notably, the n-type characteristic of Bi/MoS2 remains unaffected, and no significant changes in the local density of states near the conduction band minimum are observed despite the presence of defects detected by STM and STS. As a result, the Fermi level (EF) resides below the conduction band of MoS2. The study also examines the impact of annealing on the contact interface, revealing no interface reaction between Bi and MoS2 up to 300 °C. These findings enhance our understanding of semimetal (Bi) contacts on MoS2, with implications for improving the performance and reliability of electronic devices.more » « less
-
Recently, the fabricated MoS2 field effect transistors (FETs) with 1T-MoS2 electrodes exhibit excellent performance with rather low contact resistance, as compared with those with metals deposited directly on 2H-MoS2 (Kappera et al 2014 Nat. Mater. 13 1128), but the reason for that remains elusive. By means of density functional theory calculations, we investigated the carrier injection at the 1T/2H MoS2 interface and found that although the Schottky barrier height (SBH) values of 1T/2H MoS2 interfaces can be tuned by controlling the stacking patterns, the p-type SBH values of 1T/2H MoS2 interfaces with different stackings are lower than their corresponding n-type SBH values, which demonstrated that the metallic 1T phase can be used as an efficient hole injection layer for 2H-MoS2. In addition, as compared to the n-type Au/MoS2 and Pd/MoS2 contacts, the p-type SBH values of 1T/2H MoS2 interfaces are much lower, which stem from the efficient hole injection between 1T-MoS2 and 2H-MoS2. This can explain the low contact resistance in the MoS2 FETs with 1T-MoS2 electrodes. Notably, the SBH values can be effectively modulated by an external electric field, and a significantly low p-type SBH value can be achieved under an appropriate electric field. We also demonstrated that this approach is also valid for WS2, WSe2 and MoSe2 systems, which indicates that the method can most likely be extended to other TMDs, and thus may open new promising avenues of contact engineering in these materials.more » « less
-
Two-dimensional (2D) materials offer exciting possibilities for numerous applications, including next-generation sensors and field-effect transistors (FETs). With their atomically thin form factor, it is evident that molecular activity at the interfaces of 2D materials can shape their electronic properties. Although much attention has focused on engineering the contact and dielectric interfaces in 2D material-based transistors to boost their drive current, less is understood about how to tune these interfaces to improve the long-term stability of devices. In this work, we evaluated molybdenum disulfide (MoS2) transistors under continuous electrical stress for periods lasting up to several days. During stress in ambient air, we observed temporary threshold voltage shifts that increased at higher gate voltages or longer stress durations, correlating to changes in interface trap states (ΔNit) of up to 1012 cm–2. By modifying the device to include either SU-8 or Al2O3 as an additional dielectric capping layer on top of the MoS2 channel, we were able to effectively reduce or even eliminate this unstable behavior. However, we found this encapsulating material must be selected carefully, as certain choices actually amplified instability or compromised device yield, as was the case for Al2O3, which reduced yield by 20% versus all other capping layers. Further refining these strategies to preserve stability in 2D devices will be crucial for their continued integration into future technologies.more » « less
-
We report a method of engineering a reversible change in interlayer bonding between layers of exfoliated thin films of MoS2 by means of hydrogen intercalation through forming gas annealing. Interlayer bonding strength is probed through the behavior of MoS2 under process-induced strain engineering, where two-dimensional (2D) flakes are encapsulated with a deposited stressed thin film layer to transfer strain into the underlying 2D materials. It is shown that after forming gas annealing, the depth of the strain transferred into multilayer MoS2 is enhanced as determined through layer-thickness-dependent Raman spectroscopic mapping. This change represents a transition from a 2D van der Waals-bonded material in the as-exfoliated samples to a more three-dimensional (3D)-bonded system in the annealed samples. We demonstrate the reversibility of this effect by means of vacuum annealing of previously forming gas annealed samples. The process of forming gas annealing itself also imparts strain into MoS2 due to a combination of 2D-to-3D bonding transition with differential thermal mismatch between the MoS2 and the substrate. These strains are shown to be retained after the vacuum annealing process, despite the transition back to 2D bonding. Since forming gas annealing is a common technical process in engineering 2D electronic devices, these results represent an important consideration in understanding non-intentionally applied strains due to changes in the mechanical properties of 2D materials.more » « less
An official website of the United States government
