skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Measurement of the crystallization and phase transition of niobium dioxide thin-films using a tube furnace optical transmission system
Niobium dioxide has a volatile memristive phase change that occurs ∼800 °C that makes it an ideal candidate for future neuromorphic electronics. A straightforward optical system has been developed on a horizontal tube furnace for in situ spectral measurements as an as-grown Nb2O5 film is annealed and ultimately crystallizes as NbO2. The system measures the changing spectral transmissivity of Nb2O5 as it undergoes both reduction and crystallization processes. We were also able to measure the transition from metallic-to-non-metallic NbO2 during the cooldown phase, which is shown to occur about 100 °C lower on a sapphire substrate than fused silica. After annealing, the material properties of the Nb2O5 and NbO2 were assessed via x-ray photoelectron spectroscopy, x-ray diffraction, and 4-point resistivity, confirming that we have made crystalline NbO2.  more » « less
Award ID(s):
2103197 2103185
PAR ID:
10597516
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
14
Issue:
11
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new ternary phase has been synthesized and structurally characterized. BaLi x Cd 13– x ( x ≈ 2) adopts the cubic NaZn 13 structure type (space group Fm 3 ¯ c , Pearson symbol cF 112) with unit cell parameter a = 13.5548 (10) Å. Structure refinements from single-crystal X-ray diffraction data demonstrate that the Li atoms are exclusively found at the centers of the Cd 12 -icosahedra. Since a cubic BaCd 13 phase does not exist, and the tetragonal BaCd 11 is the most Cd-rich phase in the Ba–Cd system, BaLi x Cd 13– x ( x ≈ 2) has to be considered as a true ternary compound. As opposed to the typical electron count of ca. 27 e -per formula unit for many known compounds with the NaZn 13 structure type, BaLi x Cd 13– x ( x ≈ 2) only has ca. 26 e -, suggesting that both electronic and geometric factors are at play. Finally, the bonding characteristics of the cubic BaLi x Cd 13– x ( x ≈ 2) and tetragonal BaCd 11 are investigated using the TB-LMTO-ASA method, showing metallic-like behavior. 
    more » « less
  2. Abstract The occurrences and cycling of slab‐originated carbon and hydrogen are considered to be controlled by their reactions with metallic iron from mantle disproportionation and slab serpentinization, to form Fe alloys containing carbon and hydrogen. Here we show experimental results on the phase relations and melting of the Fe‐C‐H system using laser‐heated diamond anvil cell and X‐ray diffraction techniques up to 72 GPa. The incorporation of hydrogen was found to lower the eutectic melting temperatures of Fe‐C alloy by ∼50–178 K at 20–70 GPa, facilitating the formation of metallic liquids in the deep mantle and thus enhancing the mobility and deep cycling of subducted carbon and hydrogen. Hydrogen also substitutes with carbon in Fe‐C metal to form hydride and diamond at relatively high‐temperature conditions (e.g., 42.6 GPa, >1885 K and 71.8 GPa, >1798 K). The hydrogen‐carbon‐enriched metallic liquids provide the necessary fluid environment for superdeep diamond growth. 
    more » « less
  3. X-ray phase contrast imaging (PCI) combined with phase retrieval has the potential to improve soft-material visibility and discrimination. This work examined the accuracy, image quality gains, and robustness of a spectral phase retrieval method proposed by our group. Spectroscopic PCI measurements of a physical phantom were obtained using state-of-the-art photon-counting detectors in combination with a polychromatic x-ray source. The phantom consisted of four poorly attenuating materials. Excellent accuracy was demonstrated in simultaneously retrieving the complete refractive properties (photoelectric absorption, attenuation, and phase) of these materials. Approximately 10 times higher SNR was achieved in retrieved images compared to the original PCI intensity image. These gains are also shown to be robust against increasing quantum noise, even for acquisition times as low as 1 s with a low-flux microfocus x-ray tube (average counts of 250 photons/pixels). We expect that this spectral phase retrieval method, adaptable to several PCI geometries, will allow significant dose reduction and improved material discrimination in clinical and industrial x-ray imaging applications. 
    more » « less
  4. ABSTRACT We present early spectral observations of the very slow Galactic nova Gaia22alz, over its gradual rise to peak brightness that lasted 180 d. During the first 50 d, when the nova was only 3–4 mag above its normal brightness, the spectra showed narrow (FWHM ≈ 400 km s−1) emission lines of H Balmer, He i, He ii, and C iv but no P Cygni absorption. A few weeks later, the high-excitation He ii and C iv lines disappeared, and P Cygni profiles of Balmer, He i, and eventually Fe ii lines emerged, yielding a spectrum typical of classical novae before peak. We propose that the early (first 50 d) spectra of Gaia22alz, particularly the emission lines with no P Cygni profiles, are produced in the white dwarf’s optically thin envelope or accretion disc, reprocessing ultraviolet and potentially X-ray emission from the white dwarf after a dramatic increase in the rate of thermonuclear reactions, during a phase known as the ‘early X-ray/UV flash’. If true, this would be one of the rare times that the optical signature of the early X-ray/UV flash has been detected. While this phase might last only a few hours in other novae and thus be easily missed, it was possible to detect in Gaia22alz due to its very slow and gradual rise and thanks to the efficiency of new all-sky surveys in detecting transients on their rise. We also consider alternative scenarios that could explain the early spectral features of Gaia22alz and its gradual rise. 
    more » « less
  5. null (Ed.)
    Natural kamacite samples (Fe92.5Ni7.5) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the c/a ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal c/a ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. 
    more » « less