skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial modeling sensitivity analysis: Copula selection for wind speed dependence
As the adoption of wind energy as a key renewable energy source accelerates, precise power flow analysis becomes crucial for accurate power delivery forecasting. This paper addresses the inherent uncertainties in wind speed data at different wind farm locations by conducting a sensitivity analysis to assess wind farm pairs. The analysis accommodates various data sizes, namely, short, medium, and large, and diverse spatial relationships between wind farms. By leveraging National Renewable Energy Laboratory wind speed data from nine distinct wind farms, the dependence structure between wind farm pairs is modeled using copulas. This modeling takes both the wind speed knowledge level and the various spatial interplays among the wind farm pairs into consideration. The findings indicate an inverse proportionality between the strength of dependence and the distance separating the wind farm pairs.  more » « less
Award ID(s):
1900462
PAR ID:
10597527
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
14
Issue:
4
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wind energy is one of the major sources of renewable energy. Countries around the world are increasingly deploying large wind farms that can generate a significant amount of clean energy. A wind farm consists of many turbines, often spread across a large geographical area. Modern wind turbines are equipped with meteorological sensors. The wind farm control center monitors the turbine sensors and adjusts the power generation parameters for optimal power production. The turbine sensors are prone to cyberattacks and with the evolving of large wind farms and their share in the power generation, it is crucial to analyze such potential cyber threats. In this paper, we present a formal framework to verify the impact of false data injection attack on the wind farm meteorological sensor measurements. The framework designs this verification as a maximization problem where the adversary's goal is to maximize the wind farm power production loss with its limited attack capability. Moreover, the adversary wants to remain stealthy to the wind farm bad data detection mechanism while it is launching its cyberattack on the turbine sensors. We evaluate the proposed framework for its threat analysis capability as well as its scalability by executing experiments on synthetic test cases. 
    more » « less
  2. Improved integration of wind farms into frequency regulation services is vital for increasing renewable energy production while ensuring power system stability. This work generalizes a recently proposed model-based receding horizon wind farm controller for secondary frequency regulation to arbitrary wind farm layouts and augments the controller to enable power modulation through storage of kinetic energy in the rotor. The new design explicitly includes actuation of blade pitch and generator torque, which facilitates implementation in existing farms as it takes advantage of current wind turbine control loops. This generalized control design improves control authority by individually controlling each turbine and using kinetic energy stored in the rotor in a coordinated manner to achieve farm level control goals. Numerical results demonstrate the effectiveness of this approach; in particular, the controller achieves accurate power tracking and reduces loss of revenue in the bulk power market by requiring less setpoint reduction (derate) than the power level control range. 
    more » « less
  3. The dynamics of the turbulent atmospheric boundary layer play a fundamental role in wind farm energy production, governing the velocity field that enters the farm as well as the turbulent mixing that regenerates energy for extraction at downstream rows. Understanding the dynamic interactions among turbines, wind farms, and the atmospheric boundary layer can therefore be beneficial in improving the efficiency of wind farm control approaches. Anticipated increases in the sizes of new wind farms to meet renewable energy targets will increase the importance of exploiting this understanding to advance wind farm control capabilities. This review discusses approaches for modeling and estimation of the wind farm flow field that have exploited such knowledge in closed-loop control, to varying degrees. We focus on power tracking as an example application that will be of critical importance as wind farms transition into their anticipated role as major suppliers of electricity. The discussion highlights the benefits of including the dynamics of the flow field in control and points to critical shortcomings of the current approaches. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  4. Abstract As the world transitions towards sustainable energy sources, offshore wind farms are one of the options under consideration in several countries. Some countries, for instance, the Netherlands, Denmark, Germany, the UK, and China, have already constructed multiple offshore wind farms. Other countries, such as the United States in North America and Brazil in South America, are making movements toward offshore wind. One potential problem is that offshore wind farm wakes can extend for longer distances than onshore, placing challenges on potential wake losses due to farm-to-farm interaction effects. This study proposes a farm-to-farm benchmark to complement ongoing experimental and computational efforts. We consider eight engineering wake models and 31 cases of pairs of existing offshore wind farms, totaling 248 simulations. The results varied according to the engineering wake model applied, alignment (or not) of neighboring wind farms with the prevailing wind direction, and wind turbine capacity. The range of AEP loss significantly varied between 0.075% and around 2.3% in the extreme cases. 
    more » « less
  5. Abstract This study explores the effects of various parameters on wake interactions between offshore wind farms, with a particular focus on the Revolution-Southfork Wind and Vineyard Wind projects. The research examines how factors such as Euclidean distances, turbine-rated power, rotor diameters, and the number of turbines at upstream farms impact the annual energy production (AEP) of downstream installations. The results reveal significant variations in AEP losses, with the Nygaard model demonstrating a marked sensitivity to changes in turbine-rated power, rotor diameter, and the differing Euclidean distances between farms. Our findings indicate that strategic planning regarding turbine characteristics and farm placements is essential for optimizing energy output and reducing wake-induced power losses. These insights lay the groundwork for further analytical research. 
    more » « less