skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Turbulence and Control of Wind Farms
The dynamics of the turbulent atmospheric boundary layer play a fundamental role in wind farm energy production, governing the velocity field that enters the farm as well as the turbulent mixing that regenerates energy for extraction at downstream rows. Understanding the dynamic interactions among turbines, wind farms, and the atmospheric boundary layer can therefore be beneficial in improving the efficiency of wind farm control approaches. Anticipated increases in the sizes of new wind farms to meet renewable energy targets will increase the importance of exploiting this understanding to advance wind farm control capabilities. This review discusses approaches for modeling and estimation of the wind farm flow field that have exploited such knowledge in closed-loop control, to varying degrees. We focus on power tracking as an example application that will be of critical importance as wind farms transition into their anticipated role as major suppliers of electricity. The discussion highlights the benefits of including the dynamics of the flow field in control and points to critical shortcomings of the current approaches. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  more » « less
Award ID(s):
1949778 2034111 1635430
PAR ID:
10313304
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Control, Robotics, and Autonomous Systems
Volume:
5
Issue:
1
ISSN:
2573-5144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-fidelity engineering wake models are often combined with linear superposition laws to predict wake velocities across wind farms under steady atmospheric conditions. While convenient for wind farm planning and long-term performance evaluation, such models are unable to capture the time-varying nature of the waked velocity field, as they are agnostic to the complex aerodynamic interactions among wind turbines and the effects of atmospheric boundary layer turbulence. To account for such effects while remaining amenable to conventional system-theoretic tools for flow estimation and control, we propose a new class of data-enhanced physics-based models for the dynamics of wind farm flow fluctuations. Our approach relies on the predictive capability of the stochastically forced linearized Navier–Stokes equations around static base flow profiles provided by conventional engineering wake models. We identify the stochastic forcing into the linearized dynamics via convex optimization to ensure statistical consistency with higher-fidelity models or experimental measurements while preserving model parsimony. We demonstrate the utility of our approach in completing the statistical signature of wake turbulence in accordance with large-eddy simulations of turbulent flow over a cascade of yawed wind turbines. Our numerical experiments provide insight into the significance of spatially distributed field measurements in recovering the statistical signature of wind farm turbulence and training stochastic linear models for short-term wind forecasting. 
    more » « less
  2. Large scale coherent structures in the atmospheric boundary layer (ABL) are known to contribute to the power generation in wind farms. In order to understand the dynamics of large scale structures, we perform proper orthogonal decomposition (POD) analysis of a finite sized wind turbine array canopy in the current paper. The POD analysis sheds light on the dynamics of large scale coherent modes as well as on the scaling of the eigenspectra in the heterogeneous wind farm. We also propose adapting a novel Fourier-POD (FPOD) modal decomposition which performs POD analysis of spanwise Fourier-transformed velocity. The FPOD methodology helps us in decoupling the length scales in the spanwise and streamwise direction when studying the 3D energetic coherent modes. Additionally, the FPOD eigenspectra also provide deeper insights for understanding the scaling trends of the three-dimensional POD eigenspectra and its convergence, which is inherently tied to turbulent dynamics. Understanding the behaviour of large scale structures in wind farm flows would not only help better assess reduced order models (ROM) for forecasting the flow and power generation but would also play a vital role in improving the decision making abilities in wind farm optimization algorithms in future. Additionally, this study also provides guidance for better understanding of the POD analysis in the turbulence and wind farm community. 
    more » « less
  3. There has been an increase in recognition of the important role that the boundary layer turbulent flow structure has on wake recovery and concomitant wind farm efficiency. Most research thus far has focused on onshore wind farms, in which the ground surface is static. With the expected growth of offshore wind farms, there is increased interest in turbulent flow structures above wavy, moving surfaces and their effects on offshore wind farms. In this study, experiments are performed to analyze the turbulent structure above the waves in the wake of a fixed-bottom model wind farm, with special emphasis on the conditional averaged Reynolds stresses, using a quadrant analysis. Phase-averaged profiles show a correlation between the Reynolds shear stresses and the curvature of the waves. Using a quadrant analysis, Reynolds stress dependence on the wave phase is observed in the phase-dependent vertical position of the turbulence events. This trend is primarily seen in quadrants 1 and 3 (correlated outward and inward interactions). Quantification of the correlation between the Reynolds shear stress events and the surface waves provides insight into the turbulent flow mechanisms that influence wake recovery throughout the wake region and should be taken into consideration in wind turbine operation and placement. 
    more » « less
  4. As turbines continue to grow in hub height and rotor diameter and wind farms grow larger, consideration of stratified atmospheric boundary layer (ABL) processes in wind power models becomes increasingly important. Atmospheric stratification can considerably alter the boundary layer structure and flow characteristics through buoyant forcing. Variations in buoyancy, and corresponding ABL stability, in both space and time impact ABL wind speed shear, wind direction shear, boundary layer height, turbulence kinetic energy, and turbulence intensity. In addition, the presence of stratification will result in a direct buoyant forcing within the wake region. These ABL mechanisms affect turbine power production, the momentum and kinetic energy deficit wakes generated by turbines, and the turbulent mixing and kinetic energy entrainment in wind farms. Presently, state-of-practice engineering models of mean wake momentum utilize highly empirical turbulence models that do not explicitly account for ABL stability. Models also often neglect the interaction between the wake momentum deficit and the turbulence kinetic energy added by the wake, which depends on stratification. In this work, we develop a turbulence model that models the wake-added turbulence kinetic energy, and we couple it with a wake model based on the parabolized Reynolds-averaged Navier–Stokes equations. Comparing the model predictions to large eddy simulations across stabilities (Obukhov lengths) and surface roughness lengths, we find lower prediction error in both power production and the wake velocity field across the ABL conditions and error metrics investigated. 
    more » « less
  5. null (Ed.)
    Wake models play an integral role in wind farm layout optimization and operations where associated design and control decisions are only as good as the underlying wake model upon which they are based. However, the desired model fidelity must be counterbalanced by the need for simplicity and computational efficiency. As a result, efficient engineering models that accurately capture the relevant physics—such as wake expansion and wake interactions for design problems and wake advection and turbulent fluctuations for control problems—are needed to advance the field of wind farm optimization. In this paper, we discuss a computationally-efficient continuous-time one-dimensional dynamic wake model that includes several features derived from fundamental physics, making it less ad-hoc than prevailing approaches. We first apply the steady-state solution of the model to predict the wake expansion coefficients commonly used in design problems. We demonstrate that more realistic results can be attained by linking the wake expansion rate to a top-down model of the atmospheric boundary layer, using a super-Gaussian wake profile that smoothly transitions between a top-hat and Gaussian distribution as well as linearly-superposing wake interactions. We then apply the dynamic model to predict trajectories of wind farm power output during start-up and highlight the improved accuracy of non-linear advection over linear advection. Finally, we apply the dynamic model to the control-oriented application of predicting power output of an irregularly-arranged farm during continuous operation. In this application, model fidelity is improved through state and parameter estimation accounting for spanwise inflow inhomogeneities and turbulent fluctuations. The proposed approach thus provides a modeling paradigm with the flexibility to enable designers to trade-off between accuracy and computational speed for a wide range of wind farm design and control applications. 
    more » « less