skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Length dependence of waveform mismatch: a caveat on waveform accuracy
Abstract The Simulating eXtreme Spacetimes Collaboration’s codeSpECcan now routinely simulate binary black hole mergers undergoing 25 orbits, with the longest simulations undergoing nearly 180 orbits. While this sounds impressive, the mismatch between the highest resolutions for this long simulation is O ( 10 1 ) . Meanwhile, the mismatch between resolutions for the more typical simulations tends to be O ( 10 4 ) , despite the resolutions being similar to the long simulations’. In this note, we explain why mismatch alone gives an incomplete picture of code—and waveform—quality, especially in the context of providing waveform templates for LISA and 3G detectors, which require templates with O ( 10 3 ) O ( 10 5 ) orbits. We argue that to ready the GW community for the sensitivity of future detectors, numerical relativity groups must be aware of this caveat, and also run future simulations with at least three resolutions to properly assess waveform accuracy.  more » « less
Award ID(s):
2047382 2309211 2309231 2308615 2209655 2209656
PAR ID:
10597587
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
42
Issue:
11
ISSN:
0264-9381
Page Range / eLocation ID:
117001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A test of lepton flavor universality in B ± K ± μ + μ and B ± K ± e + e decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B ± K ± μ + μ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B ( B ± K ± μ + μ ) to B ( B ± K ± e + e ) is determined from the measured double ratio R ( K ) of these decays to the respective branching fractions of the B ± J / ψ K ± with J / ψ μ + μ and e + e decays, which allow for significant cancellation of systematic uncertainties. The ratio R ( K ) is measured in the range 1.1 < q 2 < 6.0 GeV 2 , whereqis the invariant mass of the lepton pair, and is found to be R ( K ) = 0.78 0.23 + 0.47 , in agreement with the standard model expectation R ( K ) 1 . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, B ( B ± K ± μ + μ ) = ( 12.42 ± 0.68 ) × 10 8 , is consistent with the present world-average value and has a comparable precision. 
    more » « less
  2. Abstract Gravitational wave searches are crucial for studying compact sources such as neutron stars and black holes. Many sensitive modeled searches use matched filtering to compare gravitational strain data to a set of waveform models known as template banks. We introduce a new stochastic placement method for constructing template banks, offering efficiency and flexibility to handle arbitrary parameter spaces, including orbital eccentricity, tidal deformability, and other extrinsic parameters. This method can be computationally limited by the ability to compare proposal templates with the accepted templates in the bank. To alleviate this computational load, we introduce the use of inner product inequalities to reduce the number of required comparisons. We also introduce a novel application of Gaussian Kernel Density Estimation to enhance waveform coverage in sparser regions. Our approach has been employed to search for eccentric binary neutron stars, low-mass neutron stars, primordial black holes, and supermassive black hole binaries. We demonstrate that our method produces self-consistent banks that recover the required minimum fraction of signals. For common parameter spaces, our method shows comparable computational performance and similar template bank sizes to geometric placement methods and stochastic methods, while easily extending to higher-dimensional problems. The time to run a search exceeds the time to generate the bank by a factor of O ( 10 5 ) for dedicated template banks, such as geometric, mass-only stochastic, and aligned spin cases, O ( 10 4 ) for eccentric and O ( 10 3 ) for the tidal deformable bank. With the advent of efficient template bank generation, the primary area for improvement is developing more efficient search methodologies. 
    more » « less
  3. Abstract Analytic continuation from (3, 1) signature Minkowski to (2, 2) signature Klein space has emerged as a useful tool for the understanding of scattering amplitudes and flat space holography. Under this continuation, past and future null infinity merge into a single boundary ( J ) which is the product of a null line with a (1, 1) signature torus. The Minkowskian S -matrix continues to a Kleinian S -vector which in turn may be represented by a Poincaré-invariant vacuum state | C in the Hilbert space built on J . | C contains all information about S in a novel, repackaged form. We give an explicit construction of | C in a Lorentz/conformal basis for a free massless scalar. J separates into two halves J ± which are the asymptotic null boundaries of the regions timelike and spacelike separated from the origin. | C is shown to be a maximally entangled state in the product of the J ± Hilbert spaces. 
    more » « less
  4. Abstract We present a major update to the Simulating eXtreme Spacetimes (SXSs) Collaboration’s catalog of binary black hole (BBH) simulations. Using highly efficient spectral methods implemented in the Spectral Einstein Code (SpEC), we have nearly doubled the total number of binary configurations from 2018 to 3756. The catalog now more densely covers the parameter space with precessing simulations up to mass ratioq = 8 and dimensionless spins up to | χ | 0.8 with near-zero eccentricity. The catalog also includes some simulations at higher mass ratios with moderate spin and more than 250 eccentric simulations. We have also deprecated and rerun some simulations from our previous catalog (e.g. simulations run with a much older version ofSpECor that had anomalously high errors in the waveform). The median waveform difference (which is similar to the mismatch) between resolutions over the simulations in the catalog is 4 × 10 4 . The simulations have a median of 22 orbits, while the longest simulation has 148 orbits. We have corrected each waveform in the catalog to be in the binary’s center-of-mass frame and exhibit gravitational-wave memory. We estimate the total CPU cost of all simulations in the catalog to be 480 000 000 core-hours. We find that using spectral methods for BBH simulations is over 1000 times more efficient than previously published finite-difference simulations. The full catalog is publicly available through thesxsPython package and athttps://data.black-holes.org . 
    more » « less
  5. In this paper, we develop a quantum theory of homogeneously curved tetrahedron geometry, by applying the combinatorial quantization to the phase space of tetrahedron shapes defined in Haggard et al (2016 Ann. Henri Poincaré 17 2001–48). Our method is based on the relation between this phase space and the moduli space of SU(2) flat connections on a 4-punctured sphere. The quantization results in the physical Hilbert space as the solution of the quantum closure constraint, which quantizes the classical closure condition M 4 M 3 M 2 M 1 = 1 , M ν SU ( 2 ) , for the homogeneously curved tetrahedron. The quantum group U q ( su ( 2 ) ) emerges as the gauge symmetry of a quantum tetrahedron. The physical Hilbert space of the quantum tetrahedron coincides with the Hilbert space of 4-valent intertwiners of U q ( su ( 2 ) ) . In addition, we define the area operators quantizing the face areas of the tetrahedron and compute the spectrum. The resulting spectrum is consistent with the usual Loop-Quantum-Gravity area spectrum in the large spin regime but is different for small spins. This work closely relates to 3+1 dimensional Loop Quantum Gravity in presence of cosmological constant and provides a justification for the emergence of quantum group in the theory. 
    more » « less