Abstract Species distribution modelling (SDM), also called environmental or ecological niche modelling, has developed over the last 30 years as a widely used tool used in core areas of biogeography including historical biogeography, studies of diversity patterns, studies of species ranges, ecoregional classification, conservation assessment and projecting future global change impacts. In the 50th anniversary year ofJournal of Biogeography, I reflect on developments in species distribution modelling, illustrate how embedded the methodology has become in all areas of biogeography and speculate on future directions in the field. Challenges to species distribution modelling raised in this journal in 2006 have been addressed to a significant degree. Those challenges are clarification of the niche concept; improved sample design for species occurrence data; model parameterization; predictor selection; assessing model performance and transferability; and integrating correlative and process models of species distributions. SDM is used, often in conjunction with other evidence, to understand past species range dynamics, identify patterns and drivers of biological diversity, identify drivers of species range limits, define and delineate ecoregions, estimate the distributions of biodiversity elements in relation to protected status and to prioritize conservation action, and to forecast species range shifts in response to climate change and other global change scenarios. Areas of progress in SDM that may become more widely accessible and useful tools in biogeography include genetically informed models and community distribution models.
more »
« less
This content will become publicly available on February 1, 2026
Paleobiogeographic insights gained from ecological niche models: progress and continued challenges
The spatial distribution of individuals within ecological assemblages and their associated traits and behaviors are key determinants of ecosystem structure and function. Consequently, determining the spatial distribution of species, and how distributions influence patterns of species richness across ecosystems today and in the past, helps us understand what factors act as fundamental controls on biodiversity. Here, we explore how ecological niche modeling has contributed to understanding the spatiotemporal distribution of past biodiversity and past ecological and evolutionary processes. We first perform a semiquantitative literature review to capture studies that applied ecological niche models (ENMs) to the past, identifying 668 studies. We coded each study according to focal taxonomic group, whether and how the study used fossil evidence, whether it relied on evidence or methods in addition to ENMs, spatial scale of the study, and temporal intervals included in the ENMs. We used trends in publication patterns across categories to anchor discussion of recent technical advances in niche modeling, focusing on paleobiogeographic ENM applications. We then explored contributions of ENMs to paleobiogeography, with a particular focus on examining patterns and associated drivers of range dynamics; phylogeography and within-lineage dynamics; macroevolutionary patterns and processes, including niche change, speciation, and extinction; drivers of community assembly; and conservation paleobiogeography. Overall, ENMs are powerful tools for elucidating paleobiogeographic patterns. ENMs are most commonly used to understand Quaternary dynamics, but an increasing number of studies use ENMs to gain important insight into both ecological and evolutionary processes in pre-Quaternary times. Deeper integration with traits and phylogenies may further extend those insights.
more »
« less
- PAR ID:
- 10597822
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Paleobiology
- Volume:
- 51
- Issue:
- 1
- ISSN:
- 0094-8373
- Page Range / eLocation ID:
- 8 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Functional diversity is an important aspect of biodiversity, but its relationship to species diversity in time and space is poorly understood. Here we compare spatial patterns of functional and taxonomic diversity across marine and terrestrial systems to identify commonalities in their respective ecological and evolutionary drivers. We placed species-level ecological traits into comparable multi-dimensional frameworks for two model systems, marine bivalves and terrestrial birds, and used global speciesoccurrence data to examine the distribution of functional diversity with latitude and longitude. In both systems, tropical faunas show high total functional richness (FR) but low functional evenness (FE) (i.e. the tropics contain a highly skewed distribution of species among functional groups). Functional groups that persist toward the poles become more uniform in species richness, such that FR declines and FE rises with latitude in both systems. Temperate assemblages are more functionally even than tropical assemblages subsampled to temperate levels of species richness, suggesting that high species richness in the tropics reflects a high degree of ecological specialization within a few functional groups and/or factors that favour high recent speciation or reduced extinction rates in those groups.more » « less
-
Abstract Community ecology typically assumes that competitive exclusion and species coexistence are unaffected by evolution on the time scale of ecological dynamics. However, recent studies suggest that rapid evolution operating concurrently with competition may enable species coexistence. Such findings necessitate general theory that incorporates the coexistence contributions of eco‐evolutionary processes in parallel with purely ecological mechanisms and provides metrics for quantifying the role of evolution in shaping competitive outcomes in both modelling and empirical contexts. To foster the development of such theory, here we extend the interpretation of the two principal metrics of modern coexistence theory—niche and competitive ability differences—to systems where competitors evolve. We define eco‐evolutionary versions of these metrics by considering how invading and resident species adapt to conspecific and heterospecific competitors. We show that the eco‐evolutionary niche and competitive ability differences are sums of ecological and evolutionary processes, and that they accurately predict the potential for stable coexistence in previous theoretical studies of eco‐evolutionary dynamics. Finally, we show how this theory frames recent empirical assessments of rapid evolution effects on species coexistence, and how empirical work and theory on species coexistence and eco‐evolutionary dynamics can be further integrated.more » « less
-
Rodent middens provide a fine-scale spatiotemporal record of plant and animal communities over the late Quaternary. In the Americas, middens have offered insight into biotic responses to past environmental changes and historical factors influencing the distribution and diversity of species. However, few studies have used middens to investigate genetic or ecosystem level responses. Integrating midden studies with neoecology and experimental evolution can help address these gaps and test mechanisms underlying eco-evolutionary patterns across biological and spatiotemporal scales. Fully realizing the potential of middens to answer cross-cutting ecological and evolutionary questions and inform conservation goals in the Anthropocene will require a collaborative research community to exploit existing midden archives and mount new campaigns to leverage midden records globally.more » « less
-
Urban areas are dynamic ecological systems defined by interdependent biological, physical, and social components. The emergent structure and heterogeneity of urban landscapes drives biotic outcomes in these areas, and such spatial patterns are often attributed to the unequal stratification of wealth and power in human societies. Despite these patterns, few studies have effectively considered structural inequalities as drivers of ecological and evolutionary outcomes and have instead focused on indicator variables such as neighborhood wealth. In this analysis, we explicitly integrate ecology, evolution, and social processes to emphasize the relationships that bind social inequities—specifically racism—and biological change in urbanized landscapes. We draw on existing research to link racist practices, including residential segregation, to the heterogeneous patterns of flora and fauna observed by urban ecologists. In the future, urban ecology and evolution researchers must consider how systems of racial oppression affect the environmental factors that drive biological change in cities. Conceptual integration of the social and ecological sciences has amassed considerable scholarship in urban ecology over the past few decades, providing a solid foundation for incorporating environmental justice scholarship into urban ecological and evolutionary research. Such an undertaking is necessary to deconstruct urbanization’s biophysical patterns and processes, inform equitable and anti-racist initiatives promoting justice in urban conservation, and strengthen community resilience to global environmental change.more » « less
An official website of the United States government
