A three-dimensional numerical model of the Amundsen Sea (Antarctica) was used to simulate the period Jan.2006-Mar.2022 under consistent atmospheric/oceanic forcings, bathymetry/ice shelf topography, and model equations/parameters. The model is an implementation of the Regional Ocean Modeling System (ROMS, https://www.myroms.org/) with extensions for sea ice (Budgell 2005) and ice shelves (Dinniman et al. 2011). It simulates the ocean hydrography and circulation, sea ice thermodynamics and dynamics, and the basal melt of the ice shelves, with a uniform horizontal mesh of 1.5km and 20 topography-following vertical levels. Forcings include the ERA5 reanalysis (3-hourly), 10 tidal constituents from CATS 2008, and ocean/sea ice conditions at the edges of the model domain taken from the 5km-resolution circumpolar model of Dinniman et al. 2020 and from daily SSM/I satellite images. The model outputs are divided into nine directories each containing two years worth of model results (run661-669) in the NetCDF format. Each directory contains: daily-averaged model fields (roms_avg_xxxx.nc), instantaneous snapshots every 3 hours for select fields (roms_qck_xxxx.nc), and instantaneous snapshots every 30 days (roms_his_xxxx.nc). All the metadata information necessary for the interpretation of the model outputs (dimensions, units, etc) is included inside the NetCDF files. The NetCDF files follow the CF conventions and can be opened with various software that are open source and freely available over the Internet. In addition to the model outputs, this archive includes the computer code as well as the input files necessary for reproducing the model outputs of this archive.
more »
« less
Data Archive of Mid-21st Century Projections for the Amundsen Sea (Western Antarctica)
A 3-D numerical model was used for multi-decadal eddy-resolving simulations of the Amundsen Sea embayment (Antarctica). A control simulation covered the historical period 2006-2023 (~2 decades) under realistic atmospheric and oceanic conditions. Three additional simulations representing the mid-21st century were conducted based on future projections from CMIP6 models ACCESS-CM2, MPI-ESM1-2-HR, MRI-ESM2-0 (scenario SSP2-4.5). These three CMIP6 models were selected based on their realism during the historical period as well as their diversity in terms of resolution and level of warming. The four simulations provided information about the regional hydrography, oceanic circulation, sea ice cover, ice shelf basal melt rates, and biogeochemical conditions (nitrogen and iron). The four simulations were then condensed into daily climatologies in order to summarize changes in the seasonal cycle of the Amundsen embayment in response to the projected warming. The present archive includes the four daily climatologies as well as all the information required to repeat the numerical experiments (code and input files).
more »
« less
- Award ID(s):
- 1941292
- PAR ID:
- 10598163
- Publisher / Repository:
- Virginia Institute of Marine Science
- Date Published:
- Edition / Version:
- 1
- Subject(s) / Keyword(s):
- Antarctica, Amundsen Sea, Ice shelves, Oceanography, Cryosphere, Modeling, ROMS, Sea ice, Southern Ocean, Polynyas, Blooms, Carbon
- Format(s):
- Medium: X Size: 650GB Other: nc
- Size(s):
- 650GB
- Institution:
- William & Mary, Virginia Institute of Marine Science
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st centurynull (Ed.)Abstract. Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution inresponse to different climate scenarios and assess the mass loss that would contribute tofuture sea level rise. However, there is currently no consensus on estimates of the future massbalance of the ice sheet, primarily because of differences in the representation of physicalprocesses, forcings employed and initial states of ice sheet models. This study presentsresults from ice flow model simulations from 13 international groups focusing on the evolutionof the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet ModelIntercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from theCoupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climatemodel results. Simulations of the Antarctic ice sheet contribution to sea level rise in responseto increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent(SLE) under Representative ConcentrationPathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment withconstant climate conditions and should therefore be added to the mass loss contribution underclimate conditions similar to present-day conditions over the same period. The simulated evolution of theWest Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighingthe increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelfcollapse, here assumed to be caused by large amounts of liquid water ponding at the surface ofice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without iceshelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, thecalibration of these melt rates based on oceanic conditions taken outside of ice shelf cavitiesand the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario basedon two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared tosimulations done under present-day conditions for the two CMIP5 forcings used and displaylimited mass gain in East Antarctica.more » « less
-
Abstract The variability of Arctic sea ice extent (SIE) on interannual and multidecadal time scales is examined in 29 models with historical forcing participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) and in twentieth-century sea ice reconstructions. Results show that during the historical period with low external forcing (1850–1919), CMIP6 models display relatively good agreement in their representation of interannual sea ice variability (IVSIE) but exhibit pronounced intermodel spread in multidecadal sea ice variability (MVSIE), which is overestimated with respect to sea ice reconstructions and is dominated by model uncertainty in sea ice simulation in the subpolar North Atlantic. We find that this is associated with differences in models’ sensitivity to Northern Hemispheric sea surface temperatures (SSTs). Additionally, we show that while CMIP6 models are generally capable of simulating multidecadal changes in Arctic sea ice from the mid-twentieth century to present day, they tend to underestimate the observed sea ice decline during the early twentieth-century warming (ETCW; 1915–45). These results suggest the need for an improved characterization of the sea ice response to multidecadal climate variability in order to address the sources of model bias and reduce the uncertainty in future projections arising from intermodel spread. Significance StatementThe credibility of Arctic sea ice predictions depends on whether climate models are capable of reproducing changes in the past climate, including patterns of sea ice variability which can mask or amplify the response to global warming. This study aims to better understand how latest-generation global climate models simulate interannual and multidecadal variability of Arctic sea ice relative to available observations. We find that models differ in their representation of multidecadal sea ice variability, which is overall larger than in observations. Additionally, models underestimate the sea ice decline during the period of observed warming between 1915 and 1945. Our results suggest that, to achieve better predictions of Arctic sea ice, the realism of low-frequency sea ice variability in models should be improved.more » « less
-
Abstract The models that participated in the Coupled Model Intercomparison Project (CMIP) exhibit large biases in Arctic sea ice climatology that seem related to biases in seasonal atmospheric and oceanic circulations. Using historical runs of 34 CMIP6 models from 1979 to 2014, we investigate the links between the climatological sea ice concentration (SIC) biases in September and atmospheric and oceanic model climatologies. The main intermodel spread of September SIC is well described by two leading EOFs, which together explain ∼65% of its variance. The first EOF represents an underestimation or overestimation of SIC in the whole Arctic, while the second EOF describes opposite SIC biases in the Atlantic and Pacific sectors. Regression analysis indicates that the two SIC modes are closely related to departures from the multimodel mean of Arctic surface heat fluxes during summer, primarily shortwave and longwave radiation, with incoming Atlantic Water playing a role in the Atlantic sector. Local and global links with summer cloud cover, low-level humidity, upper or lower troposphere temperature/circulation, and oceanic variables are also found. As illustrated for three climate models, the local relationships with the SIC biases are mostly similar in the Arctic across the models but show varying degrees of Atlantic inflow influence. On a global scale, a strong influence of the summer atmospheric circulation on September SIC is suggested for one of the three models, while the atmospheric influence is primarily via thermodynamics in the other two. Clear links to the North Atlantic oceanic circulation are seen in one of the models.more » « less
-
Abstract We provide an assessment of the current and future states of Arctic sea ice simulated by the Community Earth System Model version 2 (CESM2). The CESM2 is the version of the CESM contributed to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). We analyze changes in Arctic sea ice cover in two CESM2 configurations with differing atmospheric components: the CESM2(CAM6) and the CESM2(WACCM6). Over the historical period, the CESM2(CAM6) winter ice thickness distribution is biased thin, which leads to lower summer ice area compared to CESM2(WACCM6) and observations. In both CESM2 configurations, the timing of first ice‐free conditions is insensitive to the choice of CMIP6 future emissions scenario. In fact, the probability of an ice‐free Arctic summer remains low only if global warming stays below 1.5°C, which none of the CMIP6 scenarios achieve. By the end of the 21st century, the CESM2 simulates less ocean heat loss during the fall months compared to its previous version, delaying sea ice formation and leading to ice‐free conditions for up to 8 months under the high emissions scenario. As a result, both CESM2 configurations exhibit an accelerated decline in winter and spring ice area, a behavior that had not been previously seen in CESM simulations. Differences in climate sensitivity and higher levels of atmospheric CO2by 2100 in the CMIP6 high emissions scenario compared to its CMIP5 analog could explain why this winter ice loss was not previously simulated by the CESM.more » « less
An official website of the United States government
