Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.
more »
« less
This content will become publicly available on February 1, 2026
Multi-linear forms, graphs, and $L^p$-improving measures in ${\Bbb F}_q^d$
Abstract The purpose of this paper is to introduce and study the following graph-theoretic paradigm. Let$$ \begin{align*}T_Kf(x)=\int K(x,y) f(y) d\mu(y),\end{align*} $$where$$f: X \to {\Bbb R}$$,Xa set, finite or infinite, andKand$$\mu $$denote a suitable kernel and a measure, respectively. Given a connected ordered graphGonnvertices, consider the multi-linear form$$ \begin{align*}\Lambda_G(f_1,f_2, \dots, f_n)=\int_{x^1, \dots, x^n \in X} \ \prod_{(i,j) \in {\mathcal E}(G)} K(x^i,x^j) \prod_{l=1}^n f_l(x^l) d\mu(x^l),\end{align*} $$where$${\mathcal E}(G)$$is the edge set ofG. Define$$\Lambda _G(p_1, \ldots , p_n)$$as the smallest constant$$C>0$$such that the inequality(0.1)$$ \begin{align} \Lambda_G(f_1, \dots, f_n) \leq C \prod_{i=1}^n {||f_i||}_{L^{p_i}(X, \mu)} \end{align} $$holds for all nonnegative real-valued functions$$f_i$$,$$1\le i\le n$$, onX. The basic question is, how does the structure ofGand the mapping properties of the operator$$T_K$$influence the sharp exponents in (0.1). In this paper, this question is investigated mainly in the case$$X={\Bbb F}_q^d$$, thed-dimensional vector space over the field withqelements,$$K(x^i,x^j)$$is the indicator function of the sphere evaluated at$$x^i-x^j$$, and connected graphsGwith at most four vertices.
more »
« less
- Award ID(s):
- 2154232
- PAR ID:
- 10598370
- Publisher / Repository:
- Canadian Math Journal
- Date Published:
- Journal Name:
- Canadian journal of mathematics
- Volume:
- 77
- Issue:
- 1
- ISSN:
- 1496-4279
- Page Range / eLocation ID:
- 208 to 251
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Letfbe an$$L^2$$-normalized holomorphic newform of weightkon$$\Gamma _0(N) \backslash \mathbb {H}$$withNsquarefree or, more generally, on any hyperbolic surface$$\Gamma \backslash \mathbb {H}$$attached to an Eichler order of squarefree level in an indefinite quaternion algebra over$$\mathbb {Q}$$. Denote byVthe hyperbolic volume of said surface. We prove the sup-norm estimate$$\begin{align*}\| \Im(\cdot)^{\frac{k}{2}} f \|_{\infty} \ll_{\varepsilon} (k V)^{\frac{1}{4}+\varepsilon} \end{align*}$$ with absolute implied constant. For a cuspidal Maaß newform$$\varphi $$of eigenvalue$$\lambda $$on such a surface, we prove that$$\begin{align*}\|\varphi \|_{\infty} \ll_{\lambda,\varepsilon} V^{\frac{1}{4}+\varepsilon}. \end{align*}$$ We establish analogous estimates in the setting of definite quaternion algebras.more » « less
-
Abstract When$$k\geqslant 4$$and$$0\leqslant d\leqslant (k-2)/4$$, we consider the system of Diophantine equations\begin{align*}x_1^j+\ldots +x_k^j=y_1^j+\ldots +y_k^j\quad (1\leqslant j\leqslant k,\, j\ne k-d).\end{align*}We show that in this cousin of a Vinogradov system, there is a paucity of non-diagonal positive integral solutions. Our quantitative estimates are particularly sharp when$$d=o\!\left(k^{1/4}\right)$$.more » « less
-
Abstract In this paper, we establish some finiteness results about the multiplicative dependence of rational values modulo sets which are ‘close’ (with respect to the Weil height) to division groups of finitely generated multiplicative groups of a number fieldK. For example, we show that under some conditions on rational functions$$f_1, \ldots, f_n\in K(X)$$, there are only finitely many elements$$\alpha \in K$$such that$$f_1(\alpha),\ldots,f_n(\alpha)$$are multiplicatively dependent modulo such sets.more » « less
-
Abstract We considerG, a linear algebraic group defined over$$\Bbbk $$, an algebraically closed field (ACF). By considering$$\Bbbk $$as an embedded residue field of an algebraically closed valued fieldK, we can associate to it a compactG-space$$S^\mu _G(\Bbbk )$$consisting of$$\mu $$-types onG. We show that for each$$p_\mu \in S^\mu _G(\Bbbk )$$,$$\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$$is a solvable infinite algebraic group when$$p_\mu $$is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of$$\mathrm {Stab}\left (p_\mu \right )$$in terms of the dimension ofp.more » « less
An official website of the United States government
