A bstract We propose a baryogenenesis mechanism that uses a rotating condensate of a Peccei-Quinn (PQ) symmetry breaking field and the dimension-five operator that gives Majorana neutrino masses. The rotation induces charge asymmetries for the Higgs boson and for lepton chirality through sphaleron processes and Yukawa interactions. The dimension-five interaction transfers these asymmetries to the lepton asymmetry, which in turn is transferred into the baryon asymmetry through the electroweak sphaleron process. QCD axion dark matter can be simultaneously produced by dynamics of the same PQ field via kinetic misalignment or parametric resonance, favoring an axion decay constant f a ≲ 10 10 GeV, or by conventional misalignment and contributions from strings and domain walls with f a ∼ 10 11 GeV. The size of the baryon asymmetry is tied to the mass of the PQ field. In simple supersymmetric theories, it is independent of UV parameters and predicts the supersymmtry breaking mass scale to be $$ \mathcal{O} $$ O (10 − 10 4 ) TeV, depending on the masses of the neutrinos and whether the condensate is thermalized during a radiation or matter dominated era. The high supersymmetry breaking mass scale may be free from cosmological and flavor/CP problems. We also construct a theory where TeV scale supersymmetry is possible. Parametric resonance may give warm axions, and the radial component of the PQ field may give signals in rare kaon decays from mixing with the Higgs and in dark radiation.
more »
« less
This content will become publicly available on February 1, 2026
Dynamical axion misalignment from the Witten effect
A<sc>bstract</sc> We propose a relaxation mechanism for the initial misalignment angle of the pre-inflationary QCD axion with a large decay constant. The proposal addresses the challenges posed to the axion dark matter scenario by an overabundance of axions overclosing the Universe, as well as by isocurvature constraints. Many state-of-the-art experiments are searching for QCD axion dark matter with a decay constant as large as 1016GeV, motivating the need for a theoretical framework such as ours. In our model, hidden sector magnetic monopoles generated in the early Universe give the axion a large mass via the Witten effect, causing early oscillations that reduce the misalignment angle and axion abundance. As the hidden gauge symmetry breaks, its monopoles confine via cosmic strings, dissipating energy into the Standard Model and leading to monopole-antimonopole annihilation. This removes the monopole-induced mass, leaving only the standard QCD term. We consider the symmetry breaking pattern of SU(2)′→ U(1)′→ 1, leading to monopole and string formation respectively. We calculate the monopole abundance, their interactions with the axion field, and the necessary conditions for monopole-induced axion oscillations, while accounting for UV instanton effects. We present three model variations based on different symmetry breaking scales and show that they can accommodate an axion decay constant of up to 1016GeV with an inflationary scale of 1015GeV. The required alignment between monopole-induced and QCD axion potentials is achieved through a modest Nelson-Barr mechanism, avoiding overclosure without anthropic reasoning.
more »
« less
- Award ID(s):
- 2210361
- PAR ID:
- 10598486
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2025
- Issue:
- 2
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract Adding an axion-like particle (ALP) to the Standard Model, with a field velocity in the early universe, simultaneously explains the observed baryon and dark matter densities. This requires one or more couplings between the ALP and photons, nucleons, and/or electrons that are predicted as functions of the ALP mass. These predictions arise because the ratio of dark matter to baryon densities is independent of the ALP field velocity, allowing a correlation between the ALP mass, m a , and decay constant, f a . The predicted couplings are orders of magnitude larger than those for the QCD axion and for dark matter from the conventional ALP misalignment mechanism. As a result, this scheme, ALP cogenesis, is within reach of future experimental ALP searches from the lab and stellar objects, and for dark matter.more » « less
-
A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy.more » « less
-
A bstract Rotations of an axion field in field space provide a natural origin for an era of kination domination, where the energy density is dominated by the kinetic term of the axion field, preceded by an early era of matter domination. Remarkably, no entropy is produced at the end of matter domination and hence these eras of matter and kination domination may occur even after Big Bang Nucleosynthesis. We derive constraints on these eras from both the cosmic microwave background and Big Bang Nucleosynthesis. We investigate how this cosmological scenario affects the spectrum of possible primordial gravitational waves and find that the spectrum features a triangular peak. We discuss how future observations of gravitational waves can probe the viable parameter space, including regions that produce axion dark matter by the kinetic misalignment mechanism or the baryon asymmetry by axiogenesis. For QCD axion dark matter produced by the kinetic misalignment mechanism, a modification to the inflationary gravitational wave spectrum occurs above 0.01 Hz and, for high values of the energy scale of inflation, the prospects for discovery are good. We briefly comment on implications for structure formation of the universe.more » « less
-
A<sc>bstract</sc> We study the phenomenology of superheavy decaying dark matter with mass around 1010GeV which can arise in the low-energy limit of string compactifications. Generic features of string theory setups (such as high scale supersymmetry breaking and epochs of early matter domination driven by string moduli) can accommodate superheavy dark matter with the correct relic abundance. In addition, stringy instantons induce tinyR-parity violating couplings which make dark matter unstable with a lifetime well above the age of the Universe. Adopting a model-independent approach, we compute the flux and spectrum of high-energy gamma rays and neutrinos from three-body decays of superheavy dark matter and constrain its mass-lifetime plane with current observations and future experiments. We show that these bounds have only a mild dependence on the exact nature of neutralino dark matter and its decay channels. Applying these constraints to an explicit string model sets an upper bound of$$ \mathcal{O} $$ (0.1) on the string coupling, ensuring that the effective field theory is in the perturbative regime.more » « less
An official website of the United States government
