We measure the branching fraction and -violating flavor-dependent rate asymmetry of decays reconstructed using the Belle II detector in an electron-positron collision sample containing mesons. Using an optimized event selection, we find signal decays in a fit to background-discriminating and flavor-sensitive distributions. The resulting branching fraction is and the -violating asymmetry is . Published by the American Physical Society2025
more »
« less
This content will become publicly available on January 1, 2026
Boundaries of universal theories
Universal theories are a broad class of well-motivated microscopic dynamics of the electroweak sector that go beyond the Standard Model description. The long distance physics is described by electroweak parameters which correspond to local operators in the effective field theory. We show how unitarity and analyticity constrain the space of parameters. In particular, the and parameters are constrained to be positive and are necessarily the leading terms in the low-energy expansion. We assess the impact of unitarity on the interpretation of Drell-Yan data. In passing, we uncover an unexpected Wilson coefficient transcendental cancellation at the level. Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 2210361
- PAR ID:
- 10598495
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 1
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We measure the branching fraction of the decay using data collected with the Belle II detector. The data contain 387 million pairs produced in collisions at the resonance. We reconstruct decays from an analysis of the distributions of the energy and the helicity angle. We determine the branching fraction to be , in agreement with previous results. Our measurement improves the relative precision of the world average by more than a factor of two. Published by the American Physical Society2024more » « less
-
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The datasets used correspond to an integrated luminosity of up to 5 and of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is , with a total uncertainty of 0.33 GeV. © 2024 CERN, for the CMS and ATLASs Collaboration2024CERNmore » « less
-
The Super-Kamiokande and T2K Collaborations present a joint measurement of neutrino oscillation parameters from their atmospheric and beam neutrino data. It uses a common interaction model for events overlapping in neutrino energy and correlated detector systematic uncertainties between the two datasets, which are found to be compatible. Using 3244.4 days of atmospheric data and a beam exposure of protons on target in (anti)neutrino mode, the analysis finds a exclusion of conservation (defined as ) and a exclusion of the inverted mass ordering. Published by the American Physical Society2025more » « less
-
The decay has been observed with a statistical significance in excess of five standard deviations. The analysis is based on an event sample of proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment in 2018 and corresponding to an integrated luminosity of . Normalizing to the decay mode leads to a branching fraction of , a value that is consistent with the standard model prediction. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
An official website of the United States government
