skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Spanners in Planar Domains via Steiner Spanners and non-Steiner Tree Covers
Award ID(s):
2121952 2154347
PAR ID:
10598635
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Society for Industrial and Applied Mathematics
Date Published:
ISBN:
978-1-61197-832-2
Page Range / eLocation ID:
4292 to 4326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Lightness and sparsity are two natural parameters for Euclidean (1+ε)-spanners. Classical results show that, when the dimension d ∈ ℕ and ε > 0 are constant, every set S of n points in d-space admits an (1+ε)-spanners with O(n) edges and weight proportional to that of the Euclidean MST of S. Tight bounds on the dependence on ε > 0 for constant d ∈ ℕ have been established only recently. Le and Solomon (FOCS 2019) showed that Steiner points can substantially improve the lightness and sparsity of a (1+ε)-spanner. They gave upper bounds of Õ(ε^{-(d+1)/2}) for the minimum lightness in dimensions d ≥ 3, and Õ(ε^{-(d-1))/2}) for the minimum sparsity in d-space for all d ≥ 1. They obtained lower bounds only in the plane (d = 2). Le and Solomon (ESA 2020) also constructed Steiner (1+ε)-spanners of lightness O(ε^{-1}logΔ) in the plane, where Δ ∈ Ω(log n) is the spread of S, defined as the ratio between the maximum and minimum distance between a pair of points. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner (1+ε)-spanners. Using a new geometric analysis, we establish lower bounds of Ω(ε^{-d/2}) for the lightness and Ω(ε^{-(d-1)/2}) for the sparsity of such spanners in Euclidean d-space for all d ≥ 2. We use the geometric insight from our lower bound analysis to construct Steiner (1+ε)-spanners of lightness O(ε^{-1}log n) for n points in Euclidean plane. 
    more » « less
  2. null (Ed.)
    Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner weight to the weight of the minimum spanning tree of a finite set of points in ℝ^d. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on ε > 0 and d ∈ ℕ of the minimum lightness of a (1+ε)-spanner, and observed that additional Steiner points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner (1+ε)-spanners of lightness O(ε^{-1}logΔ) in the plane, where Δ ≥ Ω(√n) is the spread of the point set, defined as the ratio between the maximum and minimum distance between a pair of points. They also constructed spanners of lightness Õ(ε^{-(d+1)/2}) in dimensions d ≥ 3. Recently, Bhore and Tóth (2020) established a lower bound of Ω(ε^{-d/2}) for the lightness of Steiner (1+ε)-spanners in ℝ^d, for d ≥ 2. The central open problem in this area is to close the gap between the lower and upper bounds in all dimensions d ≥ 2. In this work, we show that for every finite set of points in the plane and every ε > 0, there exists a Euclidean Steiner (1+ε)-spanner of lightness O(ε^{-1}); this matches the lower bound for d = 2. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis. 
    more » « less
  3. null (Ed.)
  4. A spanner of a graph G is a subgraph H that approximately preserves shortest path distances in G. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions can seamlessly handle edge weights, so long as error is measured multiplicatively. In this work, we investigate whether one can similarly extend constructions of spanners with purely additive error to weighted graphs. These extensions are not immediate, due to a key lemma about the size of shortest path neighborhoods that fails for weighted graphs. Despite this, we recover a suitable amortized version, which lets us prove direct extensions of classic +2 and +4 unweighted spanners (both all-pairs and pairwise) to +2W and +4W weighted spanners, where W is the maximum edge weight. Specifically, we show that a weighted graph G contains all-pairs (pairwise) +2W and +4W weighted spanners of size O(n3/2) and O(n7/5) (O(np1/3) and O(np2/7)) respectively. For a technical reason, the +6 unweighted spanner becomes a +8W weighted spanner; closing this error gap is an interesting remaining open problem. That is, we show that G contains all-pairs (pairwise) +8W weighted spanners of size O(n4/3) (O(np1/4)). 
    more » « less