We study two popular ways to sketch the shortest path distances of an input graph. The first is distance preservers , which are sparse subgraphs that agree with the distances of the original graph on a given set of demand pairs. Prior work on distance preservers has exploited only a simple structural property of shortest paths, called consistency , stating that one can break shortest path ties such that no two paths intersect, split apart, and then intersect again later. We prove that consistency alone is not enough to understand distance preservers, by showing both a lower bound on the power of consistency and a new general upper bound that polynomially surpasses it. Specifically, our new upper bound is that any p demand pairs in an n -node undirected unweighted graph have a distance preserver on O( n 2/3 p 2/3 + np 1/3 edges. We leave a conjecture that the right bound is O ( n 2/3 p 2/3 + n ) or better. The second part of this paper leverages these distance preservers in a new construction of additive spanners , which are subgraphs that preserve all pairwise distances up to an additive error function. We give improved error bounds for spanners with relatively few edges; for example, we prove that all graphs have spanners on O(n) edges with + O ( n 3/7 + ε ) error. Our construction can be viewed as an extension of the popular path-buying framework to clusters of larger radii.
more »
« less
Weighted Additive Spanners
A spanner of a graph G is a subgraph H that approximately preserves shortest path distances in G. Spanners are commonly applied to compress computation on metric spaces corresponding to weighted input graphs. Classic spanner constructions can seamlessly handle edge weights, so long as error is measured multiplicatively. In this work, we investigate whether one can similarly extend constructions of spanners with purely additive error to weighted graphs. These extensions are not immediate, due to a key lemma about the size of shortest path neighborhoods that fails for weighted graphs. Despite this, we recover a suitable amortized version, which lets us prove direct extensions of classic +2 and +4 unweighted spanners (both all-pairs and pairwise) to +2W and +4W weighted spanners, where W is the maximum edge weight. Specifically, we show that a weighted graph G contains all-pairs (pairwise) +2W and +4W weighted spanners of size O(n3/2) and O(n7/5) (O(np1/3) and O(np2/7)) respectively. For a technical reason, the +6 unweighted spanner becomes a +8W weighted spanner; closing this error gap is an interesting remaining open problem. That is, we show that G contains all-pairs (pairwise) +8W weighted spanners of size O(n4/3) (O(np1/4)).
more »
« less
- PAR ID:
- 10179488
- Date Published:
- Journal Name:
- 46th International Workshop on Graph-Theoretic Concepts in Computer Science (WG)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For unweighted graphs, finding isometric embeddings of a graph G is closely related to decompositions of G into Cartesian products of smaller graphs. When G is isomorphic to a Cartesian graph product, we call the factors of this product a factorization of G. When G is isomorphic to an isometric subgraph of a Cartesian graph product, we call those factors a pseudofactorization of G. Prior work has shown that an unweighted graph’s pseudofactorization can be used to generate a canonical isometric embedding into a product of the smallest possible pseudofactors. However, for arbitrary weighted graphs, which represent a richer variety of metric spaces, methods for finding isometric embeddings or determining their existence remain elusive, and indeed pseudofactorization and factorization have not previously been extended to this context. In this work, we address the problem of finding the factorization and pseudofactorization of a weighted graph G, where G satisfies the property that every edge constitutes a shortest path between its endpoints. We term such graphs minimal graphs, noting that every graph can be made minimal by removing edges not affecting its path metric. We generalize pseudofactorization and factorization to minimal graphs and develop new proof techniques that extend the previously proposed algorithms due to Graham and Winkler [Graham and Winkler, ’85] and Feder [Feder, ’92] for pseudofactorization and factorization of unweighted graphs. We show that any n-vertex, m-edge graph with positive integer edge weights can be factored in O(m2) time, plus the time to find all pairs shortest paths (APSP) distances in a weighted graph, resulting in an overall running time of O(m2+n2 log log n) time. We also show that a pseudofactorization for such a graph can be computed in O(mn) time, plus the time to solve APSP, resulting in an O(mn + n2 log log n) running time.more » « less
-
A graph spanner is a fundamental graph structure that faithfully preserves the pairwise distances in the input graph up to a small multiplicative stretch. The common objective in the computation of spanners is to achieve the best-known existential size-stretch trade-off efficiently. Classical models and algorithmic analysis of graph spanners essentially assume that the algorithm can read the input graph, construct the desired spanner, and write the answer to the output tape. However, when considering massive graphs containing millions or even billions of nodes not only the input graph, but also the output spanner might be too large for a single processor to store. To tackle this challenge, we initiate the study of local computation algorithms (LCAs) for graph spanners in general graphs, where the algorithm should locally decide whether a given edge (u,v)∈E belongs to the output spanner. Such LCAs give the user the `illusion' that a specific sparse spanner for the graph is maintained, without ever fully computing it. We present the following results: -For general n-vertex graphs and r∈{2,3}, there exists an LCA for (2r−1)-spanners with O˜(n1+1/r) edges and sublinear probe complexity of O˜(n1−1/2r). These size/stretch tradeoffs are best possible (up to polylogarithmic factors). -For every k≥1 and n-vertex graph with maximum degree Δ, there exists an LCA for O(k2) spanners with O˜(n1+1/k) edges, probe complexity of O˜(Δ4n2/3), and random seed of size polylog(n). This improves upon, and extends the work of [Lenzen-Levi, 2018]. We also complement our results by providing a polynomial lower bound on the probe complexity of LCAs for graph spanners that holds even for the simpler task of computing a sparse connected subgraph with o(m) edges.more » « less
-
A spanner is reliable if it can withstand large, catastrophic failures in the network. More precisely, any failure of some nodes can only cause a small damage in the remaining graph in terms of the dilation. In other words, the spanner property is maintained for almost all nodes in the residual graph. Constructions of reliable spanners of near linear size are known in the low-dimensional Euclidean settings. Here, we present new constructions of reliable spanners for planar graphs, trees, and (general) metric spaces.more » « less
-
Given a weighted graph G(V, E) and t ≥ 1, a subgraph H is a t–spanner of G if the lengths of shortest paths in G are preserved in H up to a multiplicative factor of t. The subsetwise spanner problem aims to preserve distances in G for only a subset of the vertices. We generalize the minimum-cost subsetwise spanner problem to one where vertices appear on multiple levels, which we call the multi-level graph spanner (MLGS) problem, and describe two simple heuristics. Applications of this problem include road/network building and multi-level graph visualization, especially where vertices may require different grades of service. We formulate a 0–1 integer linear program (ILP) of size O(|E||V |2) for the more general minimum pairwise spanner problem, which resolves an open question by Sigurd and Zachariasen on whether this problem admits a useful polynomial-size ILP. We extend this ILP formulation to the MLGS problem, and evaluate the heuristic and ILP performance on random graphs of up to 100 vertices and 500 edges.more » « less