Illegitimate intelligent reflective surfaces (IRSs) can pose significant physical layer security risks on multi-user multiple-input single-output (MU-MISO) systems. Recently, a DISCO approach has been proposed an illegitimate IRS with random and time-varying reflection coefficients, referred to as a “disco” IRS (DIRS). Such DIRS can attack MU-MISO systems without relying on either jamming power or channel state information (CSI), and classical anti-jamming techniques are in-effective for the DIRS-based fully-passive jammers (DIRS-based FPJs). In this paper, we propose an IRS-enhanced anti-jamming precoder against DIRS-based FPJs that requires only statistical rather than instantaneous CSI of the DIRS-jammed channels. Specifically, a legitimate IRS is introduced to reduce the strength of the DIRS-based jamming relative to the transmit signals at a legitimate user (LU). In addition, the active beamforming at the legitimate access point (AP) is designed to maximize the signal-to-jamming-plus-noise ratios (SJNRs). Numerical results are presented to evaluate the effectiveness of the proposed IRS-enhanced anti-jamming precoder against DIRS-based FPJs.
more »
« less
DISCO Might Not Be Funky: Random Intelligent Reflective Surface Configurations That Attack
Emerging intelligent reflective surfaces (IRSs) significantly improve system performance, but also pose a significant risk for physical layer security (PLS). Unlike the extensive research on legitimate IRS-enhanced communications, in this article we present an adversarial I RS-based, fully-passive jammer (FPJ). We describe typical application scenarios for disco IRS (DIRS)-based FPJ, where an illegitimate IRS with random, time-varying reflection properties acts like a “disco ball” to randomly change the propagation environment. We introduce the principles of DIRS-based FPJ and overview existing investigations of the technology, including a design example employing one-bit phase shifters. The DIRS-based FPJ can be implemented without either jamming power or channel state information (CSI) for the legitimate users (LUs). It does not suffer from the energy constraints of traditional active jammers, nor does it require any knowledge of the LU channels. In addition to the proposed jamming attack, we also propose an anti-jamming strategy that requires only statistical rather than instantaneous CSI. Furthermore, we present a data frame structure that enables the legitimate access point (AP) to estimate the DIRS-jammed channels' statistical characteristics in the presence of the DIRS jamming. Typical cases are discussed to show the impact of the DIRS-based FPJ and the feasibility of the anti-jamming precoder (AJP). Moreover, we outline future research directions and challenges for the DIRS-based FPJ and its anti-jamming precoding to stimulate this line of research and pave the way for practical applications.
more »
« less
- PAR ID:
- 10598713
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Wireless Communications
- Volume:
- 31
- Issue:
- 5
- ISSN:
- 1536-1284
- Page Range / eLocation ID:
- 76 to 82
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Emerging intelligent reflecting surfaces (IRSs) significantly improve system performance, but also pose a huge risk for physical layer security. Existing works have illustrated that a disco IRS (DIRS), i.e., an illegitimate IRS with random time-varying reflection properties (like a “disco ball”), can be employed by an attacker to actively age the channels of legitimate users (LUs). Such active channel aging (ACA) generated by the DIRS can be employed to jam multi-user multiple-input single-output (MU-MISO) systems without relying on either jamming power or LU channel state information (CSI). To address the significant threats posed by DIRS-based fully-passive jammers (FPJs), an anti-jamming precoder is proposed that requires only the statistical characteristics of the DIRS-based ACA channels instead of their CSI. The statistical characteristics of DIRS-jammed channels are first derived, and then the anti-jamming precoder is derived based on the statistical characteristics. Furthermore, we prove that the anti-jamming precoder can achieve the maximum signal-to-jamming-plus-noise ratio (SJNR). To acquire the ACA statistics without changing the system architecture or cooperating with the illegitimate DIRS, we design a data frame structure that the legitimate access point (AP) can use to estimate the statistical characteristics. During the designed data frame, the LUs only need to feed back their received power to the legitimate AP when they detect jamming attacks. Numerical results are also presented to evaluate the effectiveness of the proposed anti-jamming precoder against the DIRS-based FPJs and the feasibility of the designed data frame used by the legitimate AP to estimate the statistical characteristics.more » « less
-
Integrated sensing and communication (ISAC) systems traditionally presuppose that sensing and communication (S&C) channels remain approximately constant during their coherence time. However, a “DISCO” reconfigurable intelligent surface (DRIS), i.e., an illegitimate RIS with random, time-varying reflection properties that acts like a “disco ball,” introduces a paradigm shift that enables active channel aging more rapidly during the channel coherence time. In this letter, we investigate the impact of DISCO jamming attacks launched by a DRIS-based fully-passive jammer (FPJ) on an ISAC system. Specifically, an ISAC problem formulation and a corresponding waveform optimization are presented in which the ISAC waveform design considers the trade-off between the S&C performance and is formulated as a Pareto optimization problem. Moreover, a theoretical analysis is conducted to quantify the impact of DISCO jamming attacks. Numerical results are presented to evaluate the S&C performance under DISCO jamming attacks and to validate the derived theoretical analysis.more » « less
-
Considered is a network of parallel wireless channels in which individual parties are engaged in secret communication under the protection of cooperative jamming. A strategic eavesdropper selects the most vulnerable channels to attack. Existing works usually suggest the defender allocate limited cooperative jamming power to various channels. However, it usually requires some strong assumptions and complex computation to find such an optimal power control policy. This paper proposes a probabilistic cooperative jamming scheme such that the defender focuses on protecting randomly selected channels. Two different cases regarding each channel’s eavesdropping capacity are discussed. The first case studies the general scenario where each channel has different eavesdropping capacity. The second case analyzes an extreme scenario where all channels have the same eavesdropping capacity. Two non-zero-sum Nash games model the competition between the network defender and an eavesdropper in each case. Furthermore, considering the case that the defender does not know the eavesdropper’s channel state information (CSI) leads to a Bayesian game. For all three games, we derive conditions for the existence of a unique Nash equilibrium (NE), and obtain the equilibria and the value functions in closed form.more » « less
-
In a time-division duplex (TDD) multiple antenna system, the channel state information (CSI) can be estimated using reverse training. A pilot contamination (spoofing) attack occurs when during the training phase, an adversary also sends identical training (pilot) signal as that of the legitimate receiver. This contaminates channel estimation and alters the legitimate beamforming design, facilitating eavesdropping. Most of past approaches to pilot spoofing detection are limited to flat fading channels. A recent approach proposed superimposing a random sequence on the training sequence at the legitimate receiver for detection of pilot spoofing attack over frequency selective channels, with unknown channels and channel lengths, except that an upper bound on the number of channel taps is assumed to be known. In this paper we augment this approach with joint estimation of both legitimate receiver and eavesdropper channels, and secure time-reversal precoding, to mitigate the effects of pilot spoofing. The proposed mitigation approach is illustrated via simulations.more » « less
An official website of the United States government

