skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 29, 2026

Title: The growth rate of surface area measure for noncompact convex sets with prescribed asymptotic cone
The Minkowski problem for a class of unbounded closed convex sets is considered. This is equivalent to a Monge-Ampère equation on a bounded convex open domain with possibly non-integrable given data. A complete solution (necessary and sufficient condition for existence and uniqueness) in dimension 2 is presented. In higher dimensions, partial results are demonstrated.  more » « less
Award ID(s):
2337630 2132330
PAR ID:
10598967
Author(s) / Creator(s):
;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We introduce and investigate $$d$$-convex union representable complexes: the simplicial complexes that arise as the nerve of a finite collection of convex open sets in $${\mathbb{R}}^d$$ whose union is also convex. Chen, Frick, and Shiu recently proved that such complexes are collapsible and asked if all collapsible complexes are convex union representable. We disprove this by showing that there exist shellable and collapsible complexes that are not convex union representable; there also exist non-evasive complexes that are not convex union representable. In the process we establish several necessary conditions for a complex to be convex union representable such as that such a complex $$\Delta $$ collapses onto the star of any face of $$\Delta $$, that the Alexander dual of $$\Delta $$ must also be collapsible, and that if $$k$$ facets of $$\Delta $$ contain all free faces of $$\Delta $$, then $$\Delta $$ is $(k-1)$-representable. We also discuss some sufficient conditions for a complex to be convex union representable. The notion of convex union representability is intimately related to the study of convex neural codes. In particular, our results provide new families of examples of non-convex neural codes. 
    more » « less
  2. Abstract We give a necessary condition on a geodesic in a Riemannian manifold that can run in some convex hypersurface.As a corollary, we obtain peculiar properties that hold true for every convex set in any generic Riemannian manifold ( M , g ) {(M,g)} .For example, if a convex set in ( M , g ) {(M,g)} is bounded by a smooth hypersurface, then it is strictly convex. 
    more » « less
  3. Stochastic gradient descent is the method of choice for large scale optimization of machine learning objective functions. Yet, its performance is greatly variable and heavily depends on the choice of the stepsizes. This has motivated a large body of research on adaptive stepsizes. However, there is currently a gap in our theoretical understanding of these methods, especially in the non-convex setting. In this paper, we start closing this gap: we theoretically analyze in the convex and non-convex settings a generalized version of the AdaGrad stepsizes. We show sufficient conditions for these stepsizes to achieve almost sure asymptotic convergence of the gradients to zero, proving the first guarantee for generalized AdaGrad stepsizes in the non-convex setting. Moreover, we show that these stepsizes allow to automatically adapt to the level of noise of the stochastic gradients in both the convex and non-convex settings, interpolating between O(1/T) and O(1/sqrt(T)), up to logarithmic terms. 
    more » « less
  4. For a set P of n points in the unit ball b ⊆ R d , consider the problem of finding a small subset T ⊆ P such that its convex-hull ε-approximates the convex-hull of the original set. Specifically, the Hausdorff distance between the convex hull of T and the convex hull of P should be at most ε. We present an efficient algorithm to compute such an ε ′ -approximation of size kalg, where ε ′ is a function of ε, and kalg is a function of the minimum size kopt of such an ε-approximation. Surprisingly, there is no dependence on the dimension d in either of the bounds. Furthermore, every point of P can be ε- approximated by a convex-combination of points of T that is O(1/ε2 )-sparse. Our result can be viewed as a method for sparse, convex autoencoding: approximately representing the data in a compact way using sparse combinations of a small subset T of the original data. The new algorithm can be kernelized, and it preserves sparsity in the original input. 
    more » « less
  5. Switching between finitely many continuous-time autonomous steepest descent dynamics for convex functions is considered. Convergence of complete solutions to common minimizers of the convex functions, if such minimizers exist, is shown. The convex functions need not be smooth and may be subject to constraints. Since the common minimizers may represent consensus in a multi-agent system modeled by an undirected communication graph, several known results about asymptotic consensus are deduced as special cases. Extensions to time-varying convex functions and to dynamics given by set-valued mappings more general than subdifferentials of convex functions are included. 
    more » « less