Improving the microbial quality of agricultural water through filtration can benefit small farms globally. The incorporation of zero-valent iron (ZVI) into sand filters (ZVI–sand) has been effective in reducing E. coli, Listeria spp., and viruses from agricultural water. This study evaluated ZVI–sand filtration in reducing E. coli levels based on influent water type and the percentage of ZVI in sand filters. A ZVI–sand filter (50% ZVI/50% sand) significantly (p < 0.001) reduced E. coli levels in deionized water by more than 1.5 log CFU/mL compared to pond water over six separate trials, indicating that water type impacts E. coli removal. Overall reductions in E. coli in deionized water and pond water were 98.8 ± 1.7% and 63 ± 24.0% (mean ± standard deviation), respectively. Filters constructed from 50% ZVI/50% sand showed slightly more reduction in E. coli in pond water than filters made from a composition of 35% ZVI/65% sand; however, the difference was not statistically significant (p = 0.48). Principal component analysis identified that the turbidity and conductivity of influent water affected E. coli reductions in filtered water in this study. ZVI–sand filtration reduces Escherichia coli levels more effectively in waters that contain low turbidity values.
more »
« less
Characterization and evaluation of recycled glass sand as water filtration media
ABSTRACT Recycled glass offers a promising, cost-effective alternative to silica sand for water filtration. This study evaluated its performance in a gravity-driven flow system using three particle sizes: gravel (G), coarse sand (CS), and fine sand (FS). As expected, a tradeoff was observed between turbidity reduction and permeability. FS achieved the greatest turbidity reduction (96.6% in particulate filtration and 93.1% in environmental water filtration) and Escherichia coli log removal of 1 ± 0.2, but low permeability. Higher permeability but poor turbidity and E. coli removal was achieved using G. To balance these tradeoffs, a layered filtration system was used to improve permeability with effective turbidity reduction (96.9% in particulate filtration and 93.5% in environmental water filtration). Without coagulant treatment, the E. coli log removal was 0.27 ± 0.15; with coagulant pre-treatment, it increased to 2.5 ± 0.4 for the layered filtration system. These findings demonstrate that crushed recycled glass can be used as an effective filtration medium and the filtration system can be configured with different particle sizes and/or layers to meet application-specific requirements.
more »
« less
- Award ID(s):
- 2230769
- PAR ID:
- 10599181
- Publisher / Repository:
- DOI PREFIX: 10.2166
- Date Published:
- Journal Name:
- Journal of Water and Health
- Volume:
- 23
- Issue:
- 6
- ISSN:
- 1477-8920
- Format(s):
- Medium: X Size: p. 780-793
- Size(s):
- p. 780-793
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Advanced treated municipal wastewater is an important alternative water source for agricultural irrigation. However, the possible persistence of chemical and microbiological contaminants in these waters raise potential safety concerns with regard to reusing treated wastewater for food crop irrigation. Two low-cost and environmentally-friendly filter media, biochar (BC) and zero-valent iron (ZVI), have attracted great interest in terms of treating reused water. Here, we evaluated the efficacy of BC-, nanosilver-amended biochar- (Ag-BC) and ZVI-sand filters, in reducing contaminants of emerging concern (CECs),Escherichia coli (E. coli)and total bacterial diversity from wastewater effluent. Six experiments were conducted with control quartz sand and sand columns containing BC, Ag-BC, ZVI, BC with ZVI, or Ag-BC with ZVI. After filtration, Ag-BC, ZVI, BC with ZVI and Ag-BC with ZVI demonstrated more than 90% (> 1 log) removal ofE. colifrom wastewater samples, while BC, Ag-BC, BC with ZVI and Ag-BC with ZVI also demonstrated efficient removal of tested CECs. Lower bacterial diversity was also observed after filtration; however, differences were marginally significant. In addition, significantly (p < 0.05) higher bacterial diversity was observed in wastewater samples collected during warmer versus colder months. Leaching of silver ions occurred from Ag-BC columns; however, this was prevented through the addition of ZVI. In conclusion, our data suggest that the BC with ZVI and Ag-BC with ZVI sand filters, which demonstrated more than 99% removal of both CECs andE. coliwithout silver ion release, may be effective, low-cost options for decentralized treatment of reused wastewater. Graphical Abstractmore » « less
-
Abstract IntroductionWe rely on coastal resources for food, water, and energy. However, over 75% of U.S. coastlines are eroding. Concurrently, the U.S. recycles less glass than other developed countries, landfilling hundreds of millions of tons every year. Recycled glass sand has many potential benefits over natural sand for combatting land loss; for example, it can be produced with controlled particle size to better resist erosion, making it an excellent—and underutilized—material for environmental restoration. ObjectivesThis research compares the physical and chemical properties of recycled glass sand to natural sands (beach and dredge) from the U.S. Gulf Coast to assess environmental safety. MethodsParticle size distribution, angularity, particle and bulk density, compaction, and permeability were evaluated using standard methods. Elemental composition and leaching were analyzed using x‐ray fluorescence and toxicity characteristic leaching procedure (TCLP), respectively. ResultsRecycled glass sand is not “sharp,” although it is less well‐rounded than natural sand. Porosity, compaction, and water permeability depend on particle size, and glass sand can be size‐separated to match or complement natural sand. Recycled glass sand is mostly silica. Additional elements used in glass processing are present at acceptable levels, and no leaching of harmful elements is detectable by TCLP. Thermally decomposable residues (e.g. label and adhesive) reliably comprised less than 1% of the material. ConclusionsThe characteristics of recycled glass sand make it a good resource for environmental restoration.more » « less
-
Abstract AimsThe goal of this study was to explore the suitability of recycled glass sand for the growth of beach-adapted plant species given the potential environmental benefits of utilizing glass sand for beach and dune restoration in the face of dwindling natural sand resources. MethodsWe grew three species native to US Gulf of Mexico beaches (Ipomoea imperati(Vahl) Griseb.,I. pes-caprae(L.) R.Br., andUniola paniculata(L.)) in three greenhouse experiments in glass sand, beach sand, or mixtures. First, we investigated nutrient and microbial effects by growing each species in pure glass sand, beach sand, and 80%/20% mixtures of glass sand/beach sand. Second, we comparedU. paniculatagrowth in glass sand mixed with 100%, 75%, 50%, 25%, or 0% beach sand. These experiments included fertilizer and microbial sterilization treatments. Third, we investigated soil permeability effects by comparing growth of all species using different grain sizes of glass sand. ResultsOverall, plants produced significantly more biomass in beach sand than in glass sand, and the effect was more pronounced with the fertilizer treatment. There were significant effects of substrate mixtures and interactions with fertilizer treatments onUniolabiomass. Further, when glass sand grain sizes were manipulated, plant biomass was equal or higher in the coarsest glass sand compared to beach sand. ConclusionsOur results demonstrate that beach-adapted plants can grow in glass sand and suggest that recycled glass sand is a potential resource for ecological restoration with incorporation of soil amendments such as fertilizer and utilization of selected grain sizes.more » « less
-
We introduce the facile one-step biosynthesis of a bilayer structured hydrogel composite of reduced-graphene oxide (rGO) and bacterial nanocellulose (BNC) for multiple photothermal water treatment applications. One-step in situ biosynthesis of a bilayered hydrogel was achieved via modification of BNC growth medium supplemented with an optimized concentration of corn steep liquor as a growth enhancer. A two-stage, growth rate-controlled formation mechanism for the bilayer structure was revealed. The final cleaned and freeze-dried reduced-GO embedded BNC bilayer membrane enables versatile applications such as filtration (tested using gold nanoparticles, Escherichia coli cells, and plasmid DNA), photothermal disinfection of entrapped E. coli , and solar water evaporation. Comparable particle rejection (up to ≈4 nm) and water flux (146 L h −1 m −2 ) to ultrafiltration were observed. Entrapment and photothermal inactivation of E. coli cells were accomplished within 10 min of solar exposure (one sun). Such treatment can potentially suppress membrane biofouling. The steam generation capacity was 1.96 kg m −2 h −1 . Our simple and scalable approach opens a new path for biosynthesis of nanostructured materials for environmental and biomedical applications.more » « less
An official website of the United States government
