skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Holomorphic curves in the 6-pseudosphere and cyclic surfaces
The space H 4 , 2 \mathbf {H}^{4,2} of vectors of norm −<#comment/> 1 -1 in R 4 , 3 \mathbb {R}^{4,3} has a natural pseudo-Riemannian metric and a compatible almost complex structure. The group of automorphisms of both of these structures is the split real form G 2 â€Č \mathsf {G}_2’ . In this paper we consider a class of holomorphic curves in H 4 , 2 \mathbf {H}^{4,2} which we call alternating. We show that such curves admit a so called Frenet framing. Using this framing, we show that the space of alternating holomorphic curves which are equivariant with respect to a surface group is naturally parameterized by certain G 2 â€Č \mathsf {G}_2’ -Higgs bundles. This leads to a holomorphic description of the moduli space as a fibration over TeichmĂŒller space with a holomorphic action of the mapping class group. Using a generalization of Labourie’s cyclic surfaces, we then show that equivariant alternating holomorphic curves are infinitesimally rigid.  more » « less
Award ID(s):
2337451
PAR ID:
10599456
Author(s) / Creator(s):
;
Publisher / Repository:
Ams
Date Published:
Journal Name:
Transactions of the American Mathematical Society
ISSN:
0002-9947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid { 0 , 1 , 
<#comment/> , n } 2 \{0,1,\dots , n\}^2 has L 1 L_1 -distortion bounded below by a constant multiple of log ⁥<#comment/> n \sqrt {\log n} . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if { G n } n = 1 ∞<#comment/> \{G_n\}_{n=1}^\infty is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number ÎŽ<#comment/> ∈<#comment/> [ 2 , ∞<#comment/> ) \delta \in [2,\infty ) , then the 1-Wasserstein metric over G n G_n has L 1 L_1 -distortion bounded below by a constant multiple of ( log ⁥<#comment/> | G n | ) 1 ÎŽ<#comment/> (\log |G_n|)^{\frac {1}{\delta }} . We proceed to compute these dimensions for ⊘<#comment/> \oslash -powers of certain graphs. In particular, we get that the sequence of diamond graphs { D n } n = 1 ∞<#comment/> \{\mathsf {D}_n\}_{n=1}^\infty has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over D n \mathsf {D}_n has L 1 L_1 -distortion bounded below by a constant multiple of log ⁥<#comment/> | D n | \sqrt {\log | \mathsf {D}_n|} . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of L 1 L_1 -embeddable graphs whose sequence of 1-Wasserstein metrics is not L 1 L_1 -embeddable. 
    more » « less
  2. This is the first of our papers on quasi-split affine quantum symmetric pairs ( U ~<#comment/> ( g ^<#comment/> ) , U ~<#comment/> ı<#comment/> ) \big (\widetilde {\mathbf U}(\widehat {\mathfrak g}), \widetilde {{\mathbf U}}^\imath \big ) , focusing on the real rank one case, i.e., g = s l 3 \mathfrak g = \mathfrak {sl}_3 equipped with a diagram involution. We construct explicitly a relative braid group action of type A 2 ( 2 ) A_2^{(2)} on the affine ı<#comment/> \imath quantum group U ~<#comment/> ı<#comment/> \widetilde {{\mathbf U}}^\imath . Real and imaginary root vectors for U ~<#comment/> ı<#comment/> \widetilde {{\mathbf U}}^\imath are constructed, and a Drinfeld type presentation of U ~<#comment/> ı<#comment/> \widetilde {{\mathbf U}}^\imath is then established. This provides a new basic ingredient for the Drinfeld type presentation of higher rank quasi-split affine ı<#comment/> \imath quantum groups in the sequels. 
    more » « less
  3. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ ÎČ<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less
  4. The hypersimplex Δ<#comment/> k + 1 , n \Delta _{k+1,n} is the image of the positive Grassmannian G r k + 1 , n ≄<#comment/> 0 Gr^{\geq 0}_{k+1,n} under the moment map. It is a polytope of dimension n −<#comment/> 1 n-1 in R n \mathbb {R}^n . Meanwhile, the amplituhedron A n , k , 2 ( Z ) \mathcal {A}_{n,k,2}(Z) is the projection of the positive Grassmannian G r k , n ≄<#comment/> 0 Gr^{\geq 0}_{k,n} into the Grassmannian G r k , k + 2 Gr_{k,k+2} under a map Z ~<#comment/> \tilde {Z} induced by a positive matrix Z ∈<#comment/> M a t n , k + 2 > 0 Z\in Mat_{n,k+2}^{>0} . Introduced in the context ofscattering amplitudes, it is not a polytope, and has full dimension 2 k 2k inside G r k , k + 2 Gr_{k,k+2} . Nevertheless, there seem to be remarkable connections between these two objects viaT-duality, as conjectured by Ɓukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid theory, total positivity, and the geometry of the hypersimplex and positroid polytopes to obtain a deeper understanding of the amplituhedron. We show that the inequalities cutting outpositroid polytopes—images of positroid cells of G r k + 1 , n ≄<#comment/> 0 Gr^{\geq 0}_{k+1,n} under the moment map—translate into sign conditions characterizing the T-dualGrasstopes—images of positroid cells of G r k , n ≄<#comment/> 0 Gr^{\geq 0}_{k,n} under Z ~<#comment/> \tilde {Z} . Moreover, we subdivide the amplituhedron intochambers, just as the hypersimplex can be subdivided into simplices, with both chambers and simplices enumerated by the Eulerian numbers. We use these properties to prove the main conjecture of Ɓukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]: a collection of positroid polytopes is a tiling of the hypersimplex if and only if the collection of T-dual Grasstopes is a tiling of the amplituhedron A n , k , 2 ( Z ) \mathcal {A}_{n,k,2}(Z) for all Z Z . Moreover, we prove Arkani-Hamed–Thomas–Trnka’s conjectural sign-flip characterization of A n , k , 2 \mathcal {A}_{n,k,2} , and Ɓukowski–Parisi–Spradlin–Volovich’s conjectures on m = 2 m=2 cluster adjacencyand onpositroid tilesfor A n , k , 2 \mathcal {A}_{n,k,2} (images of 2 k 2k -dimensional positroid cells which map injectively into A n , k , 2 \mathcal {A}_{n,k,2} ). Finally, we introduce new cluster structures in the amplituhedron. 
    more » « less
  5. We consider minimizing harmonic maps u u from Ω<#comment/> ⊂<#comment/> R n \Omega \subset \mathbb {R}^n into a closed Riemannian manifold N \mathcal {N} and prove: 1. an extension to n ≄<#comment/> 4 n \geq 4 of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold N \mathcal {N} is finite, we have\[ H n −<#comment/> 3 ( sing ⁥<#comment/> u ) ≀<#comment/> C ∫<#comment/> ∂<#comment/> Ω<#comment/> | ∇<#comment/> T u | n −<#comment/> 1 d H n −<#comment/> 1 ; \mathcal {H}^{n-3}(\operatorname {sing} u) \le C \int _{\partial \Omega } |\nabla _T u|^{n-1} \,\mathrm {d}\mathcal {H}^{n-1}; \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is N = S 2 \mathcal {N}=\mathbb {S}^2 we obtain that the singular set of u u is stable under small W 1 , n −<#comment/> 1 W^{1,n-1} -perturbations of the boundary data. In dimension n = 3 n=3 both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space W s , p W^{s,p} with s ∈<#comment/> ( 1 2 , 1 ] s \in (\frac {1}{2},1] and p ∈<#comment/> [ 2 , ∞<#comment/> ) p \in [2,\infty ) satisfying s p ≄<#comment/> 2 sp \geq 2 . We also discuss sharpness. 
    more » « less