Game-based learning (GBL) has increasingly been used to promote students’ learning engagement. Although prior GBL studies have highlighted the significance of learning engagement as a mediator of students’ meaningful learning, the existing accounts failed to capture specific evidence of how exactly students’ in-game actions in GBL enhance learning engagement. Hence, this mixed-method study was designed to examine whether middle school students’ in-game actions are likely to promote certain types of learning engagement (i.e., content and cognitive engagement). This study used and examined the game E-Rebuild, a single-player three-dimensional architecture game that requires learners’ application of math knowledge. Using in-depth gameplay behavior analysis, this study sampled a total of 92 screen-recorded and video-captured gameplay sessions attended by 25 middle school students. We adopted two analytic approaches: sequential analysis and thematic analysis. Whereas sequential analysis explored which in-game actions by students were likely to promote each type of learning engagement, the thematic analysis depicted how certain gameplay contexts contributed to students’ enhanced learning engagement. The study found that refugee allocation and material trading actions promoted students’ content engagement, whereas using in-game building tools and learning support boosted their cognitive engagement. This study also found that students’ learning engagement was associated with their development of mathematical thinking in a GBL context.
more »
« less
Identifying When and Why Students Choose to Quit Jobs in a Science Exploration Game
Students in open-ended educational games have a number of different pathways that they can select to work productively through a learning activity. Educators and system designers may want to know which of these pathways are most effective for engagement, learning, or other desirable outcomes. In this paper, we investigate which prior jobs and factors are associated with higher rates of student quitting behavior in an educational science exploration game. We use a series of Chi squared analyses to identify the jobs with the highest rates of quitting overall, and we calculate logistic regressions within specific jobs to determine the potential factors that lead to students quitting those jobs. Our analysis revealed that for 23 of the 40 jobs examined, having experience in at least one previous job significantly decreased the chances of students quitting the subsequent job, and that completing specific prior jobs reduces quit rates on specific later jobs. In our discussion, we describe the challenges associated with modeling quitting behavior, and how these analyses could be used to better optimize students’ pathways through the game environment. Specially, guiding students through specific sequences of preliminary jobs before tackling more challenging jobs can improve their engagement and reduce dropout rates, thus optimizing their learning pathways.
more »
« less
- Award ID(s):
- 1907384
- PAR ID:
- 10599896
- Publisher / Repository:
- Springer Nature Switzerland
- Date Published:
- Page Range / eLocation ID:
- 56 to 69
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background. Middle school students’ math anxiety and low engagement have been major issues in math education. In order to reduce their anxiety and support their math learning, game-based learning (GBL) has been implemented. GBL research has underscored the role of social dynamics to facilitate a qualitative understanding of students’ knowledge. Whereas students’ peer interactions have been deemed a social dynamic, the relationships among peer interaction, task efficiency, and learning engagement were not well understood in previous empirical studies. Method. This mixed-method research implemented E-Rebuild, which is a 3D architecture game designed to promote students’ math problem-solving skills. We collected a total of 102 50-minutes gameplay sessions performed by 32 middle school students. Using video-captured and screen-recorded gameplaying sessions, we implemented behavior observations to measure students’ peer interaction efficiency, task efficiency, and learning engagement. We used association analyses, sequential analysis, and thematic analysis to explain how peer interaction promoted students’ task efficiency and learning engagement. Results. Students’ peer interactions were negatively related to task efficiency and learning engagement. There were also different gameplay patterns by students’ learning/task-relevant peer-interaction efficiency (PIE) level. Students in the low PIE group tended to progress through game tasks more efficiently than those in the high PIE group. The results of qualitative thematic analysis suggested that the students in the low PIE group showed more reflections on game-based mathematical problem solving, whereas those with high PIE experienced distractions during gameplay. Discussion. This study confirmed that students’ peer interactions without purposeful and knowledge-constructive collaborations led to their low task efficiency, as well as low learning engagement. The study finding shows further design implications: (1) providing in-game prompts to stimulate students’ math-related discussions and (2) developing collaboration contexts that legitimize students’ interpersonal knowledge exchanges with peers.more » « less
-
There are many initiatives that teach Artificial Intelligence (AI) literacy to K-12 students. Most downsize college-level instructional materials to grade-level appropriate formats, overlooking students' unique perspectives in the design of curricula. To investigate the use of educational games as a vehicle for uncovering youth's understanding of AI instruction, we co-designed games with 39 Black, Hispanic, and Asian high school girls and non-binary youth to create engaging learning materials for their peers. We conducted qualitative analyses on the designed game artifacts, student discourse, and their feedback on the efficacy of learning activities. This study highlights the benefits of co-design and learning games to uncover students' understanding and ability to apply AI concepts in game-based learning, their emergent perspectives of AI, and the prior knowledge that informs their game design choices. Our research uncovers students' AI misconceptions and informs the design of educational games and grade-level appropriate AI instruction.more » « less
-
This Work-In-Progress falls within the research category of study and, focuses on the experiences and perceptions of first- and second year engineering students when using an online engineering game that was designed to enhance understanding of statics concepts. Technology and online games are increasingly being used in engineering education to help students gain competencies in technical domains in the engineering field. Less is known about the way that these online games are designed and incorporated into the classroom environment and how these factors can ignite inequitable perspectives and experiences among engineering students. Also, little if any work that combines the TAM model and intersectionality of race and gender in engineering education has been done, though several studies have been modified to account for gender or race. This study expands upon the Technology Acceptance Model (TAM) by exploring perspectives of intersectional groups (defined as women of color who are engineering students). A Mixed Method Sequential Exploratory Research Design approach was used that extends the TAM model. Students were asked to play the engineering educational game, complete an open-ended questionnaire and then to participate in a focus group. Early findings suggest that while many students were open to learning to use the game and recommended inclusion of online engineering educational games as learning tools in classrooms, only a few indicated that they would use this tool to prepare for exams or technical job interviews. Some of the main themes identified in this study included unintended perpetuation of inequality through bias in favor of students who enjoyed competition-based learning and assessment of knowledge, and bias for students having prior experience in playing online games. Competition-based assessment related to presumed learning of course content enhanced student anxiety and feelings of intimidation and led to some students seeking to “game the game” versus learning the material, in efforts to achieve grade goals. Other students associated use of the game and the classroom weighted grading with intense stress that led them to prematurely stop the use of the engineering tool. Initial findings indicate that both game design and how technology is incorporated into the grading and testing of learning outcomes, influence student perceptions of the technology’s usefulness and ultimately the acceptance of the online game as a "learning tool." Results also point to the need to explore how the crediting and assessment of students’ performance and learning gains in these types of games could yield inequitable experiences in these types of courses.more » « less
-
Auer, M.E.; Pachatz, W.; Rüütmann, T. (Ed.)Gamification, the use of game design elements in non-game contexts, has become a promising strategy for enhancing learners’ motivation, engagement, and performance. However, our understanding of how the motivational affordances of gamification interact with the motivational drivers engendered by a learning activity is still limited. In most of the studies the focus is on the role of the incorporated gamification elements, disregarding motivational factors associated with the learning activity, such as perceived utility, expectancy of success, and needed effort to complete it. Expectancy-Value model offers a practical method for estimating the level and quality of learners’ motivation towards a particular task as it accounts for both intrinsic and extrinsic motivators. Employing this model can shed a new light on the motivational potential of educational gamification. Accordingly, in this paper we present experiments with Expectancy-Value-Cost scale (EVC) as an instrument for estimating the level of students’ motivation towards a gamified learning activity. We studied empirically how the motivational factors measured by EVC relate to the level of learners’ engagement in gamified practicing and assessed their predictive qualities.more » « less
An official website of the United States government

