We study the dynamics of the unicritical polynomial family [Formula: see text]. The [Formula: see text]-values for which [Formula: see text] has a strictly preperiodic postcritical orbit are called Misiurewicz parameters, and they are the roots of Misiurewicz polynomials. The arithmetic properties of these special parameters have found applications in both arithmetic and complex dynamics. In this paper, we investigate some new such properties. In particular, when [Formula: see text] is a prime power and [Formula: see text] is a Misiurewicz parameter, we prove certain arithmetic relations between the points in the postcritical orbit of [Formula: see text]. We also consider the algebraic integers obtained by evaluating a Misiurewicz polynomial at a different Misiurewicz parameter, and we ask when these algebraic integers are algebraic units. This question naturally arises from some results recently proven by Buff, Epstein, and Koch and by the second author. We propose a conjectural answer to this question, which we prove in many cases.
more »
« less
This content will become publicly available on January 10, 2026
A note on coherent states for Virasoro orbits
There are two sets of orbits of the Virasoro group which admit a Kähler structure. We consider the construction of coherent states for the orbit [Formula: see text] which furnishes unitary representations of the group. The procedure is analogous to geometric quantization using a holomorphic polarization. We also give an explicit formula for the Kähler potential for this orbit and comment on normalization of the coherent states. We further explore some of the properties of these states, including the definition of symbols corresponding to operators and their star products. Some comments which touch upon the possibility of applying this to gravity in [Formula: see text] dimensions are also given.
more »
« less
- Award ID(s):
- 2412479
- PAR ID:
- 10599909
- Publisher / Repository:
- World Scientific Publishing Co
- Date Published:
- Journal Name:
- International Journal of Modern Physics A
- Volume:
- 40
- Issue:
- 01
- ISSN:
- 0217-751X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper is a sequel to [Monatsh. Math. 194 (2021) 523–554] in which results of that paper are generalized so that they hold in the setting of inhomogeneous Diophantine approximation. Given any integers [Formula: see text] and [Formula: see text], any [Formula: see text], and any homogeneous function [Formula: see text] that satisfies a certain nonsingularity assumption, we obtain a biconditional criterion on the approximating function [Formula: see text] for a generic element [Formula: see text] in the [Formula: see text]-orbit of [Formula: see text] to be (respectively, not to be) [Formula: see text]-approximable at [Formula: see text]: that is, for there to exist infinitely many (respectively, only finitely many) [Formula: see text] such that [Formula: see text] for each [Formula: see text]. In this setting, we also obtain a sufficient condition for uniform approximation. We also consider some examples of [Formula: see text] that do not satisfy our nonsingularity assumptions and prove similar results for these examples. Moreover, one can replace [Formula: see text] above by any closed subgroup of [Formula: see text] that satisfies certain integrability axioms (being of Siegel and Rogers type) introduced by the authors in the aforementioned previous paper.more » « less
-
We consider how the outputs of the Kadison transitivity theorem and Gelfand–Naimark–Segal (GNS) construction may be obtained in families when the initial data are varied. More precisely, for the Kadison transitivity theorem, we prove that for any nonzero irreducible representation [Formula: see text] of a [Formula: see text]-algebra [Formula: see text] and [Formula: see text], there exists a continuous function [Formula: see text] such that [Formula: see text] for all [Formula: see text], where [Formula: see text] is the set of pairs of [Formula: see text]-tuples [Formula: see text] such that the components of [Formula: see text] are linearly independent. Versions of this result where [Formula: see text] maps into the self-adjoint or unitary elements of [Formula: see text] are also presented. Regarding the GNS construction, we prove that given a topological [Formula: see text]-algebra fiber bundle [Formula: see text], one may construct a topological fiber bundle [Formula: see text] whose fiber over [Formula: see text] is the space of pure states of [Formula: see text] (with the norm topology), as well as bundles [Formula: see text] and [Formula: see text] whose fibers [Formula: see text] and [Formula: see text] over [Formula: see text] are the GNS Hilbert space and closed left ideal, respectively, corresponding to [Formula: see text]. When [Formula: see text] is a smooth fiber bundle, we show that [Formula: see text] and [Formula: see text] are also smooth fiber bundles; this involves proving that the group of ∗-automorphisms of a [Formula: see text]-algebra is a Banach Lie group. In service of these results, we review the topology and geometry of the pure state space. A simple non-interacting quantum spin system is provided as an example illustrating the physical meaning of some of these results.more » « less
-
We address the following natural extension problem for group actions: Given a group [Formula: see text], a subgroup [Formula: see text], and an action of [Formula: see text] on a metric space, when is it possible to extend it to an action of the whole group [Formula: see text] on a (possibly different) metric space? When does such an extension preserve interesting properties of the original action of [Formula: see text]? We begin by formalizing this problem and present a construction of an induced action which behaves well when [Formula: see text] is hyperbolically embedded in [Formula: see text]. Moreover, we show that induced actions can be used to characterize hyperbolically embedded subgroups. We also obtain some results for elementary amenable groups.more » « less
-
null (Ed.)Let [Formula: see text] be a group acting properly and by isometries on a metric space [Formula: see text]; it follows that the quotient or orbit space [Formula: see text] is also a metric space. We study the Vietoris–Rips and Čech complexes of [Formula: see text]. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective spaces at the first scale parameter where the homotopy type changes.more » « less
An official website of the United States government
