We consider the problem of scheduling real-time traffic with hard deadlines in a wireless ad hoc network. In contrast to existing real-time scheduling policies that merely ensure a minimal timely throughput, our design goal is to provide guarantees on both the timely throughput and data freshness in terms of age-of-information (AoI), which is a newly proposed metric that captures the "age" of the most recently received information at the destination of a link. The main idea is to introduce the AoI as one of the driving factors in making scheduling decisions. We first prove that the proposed scheduling policy is feasibility-optimal, i.e., satisfying the per-traffic timely throughput requirement. Then, we derive an upper bound on a considered data freshness metric in terms of AoI, demonstrating that the network-wide data freshness is guaranteed and can be tuned under the proposed scheduling policy. Interestingly, we reveal that the improvement of network data freshness is at the cost of slowing down the convergence of the timely throughput. Extensive simulations are performed to validate our analytical results. Both analytical and simulation results confirm the capability of the proposed scheduling policy to improve the data freshness without sacrificing the feasibility optimality.
more »
« less
AoI, Timely-Throughput, and Beyond: A Theory of Second-Order Wireless Network Optimization
This paper introduces a new theoretical framework for optimizing second-order behaviors of wireless networks. Unlike existing techniques for network utility maximization, which only consider first-order statistics, this framework models every random process by its mean and temporal variance. The inclusion of temporal variance makes this framework well-suited for modeling Markovian fading wireless channels and emerging network performance metrics such as age-of-information (AoI) and timely-throughput. Using this framework, we sharply characterize the second-order capacity region of wireless access networks. We also propose a simple scheduling policy and prove that it can achieve every interior point in the second-order capacity region. To demonstrate the utility of this framework, we apply it to an unsolved network optimization problem where some clients wish to minimize AoI while others wish to maximize timely-throughput. We show that this framework accurately characterizes AoI and timely-throughput. Moreover, it leads to a tractable scheduling policy that outperforms other existing work.
more »
« less
- PAR ID:
- 10599999
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE/ACM Transactions on Networking
- Volume:
- 32
- Issue:
- 6
- ISSN:
- 1063-6692
- Page Range / eLocation ID:
- 4707 to 4721
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Age of Information (AoI) is a performance metric that captures the freshness of the information from the perspective of the destination. The AoI measures the time that elapsed since the generation of the packet that was most recently delivered to the destination. In this paper, we consider a singlehop wireless network with a number of nodes transmitting timesensitive information to a Base Station and address the problem of minimizing the Expected Weighted Sum AoI of the network while simultaneously satisfying timely-throughput constraints from the nodes. We develop three low-complexity transmission scheduling policies that attempt to minimize AoI subject to minimum throughput requirements and evaluate their performance against the optimal policy. In particular, we develop a randomized policy, a Max- Weight policy and a Whittle’s Index policy, and show that they are guaranteed to be within a factor of two, four and eight, respectively, away from the minimum AoI possible. In contrast, simulation results show that Max-Weight outperforms the other policies, both in terms of AoI and throughput, in every network configuration simulated, and achieves near optimal performance.more » « less
-
This paper introduces a general framework to analyze and optimize age-of-information (AoI) in CSMA protocols for distributed uplink transmissions. The proposed framework combines two theoretical approaches. First, it employs second-order analysis that characterizes all random processes by their respective means and temporal variances and approximates AoI as a function of the mean and temporal variance of the packet delivery process. Second, it employs mean-field approximation to derive the mean and temporal variance of the packet delivery process for one node in the presence of interference from others. To demonstrate the utility of this framework, this paper applies it to the age-threshold ALOHA policy and identifies parameter settings that outperform those previously suggested as optimal in the original work that introduced this policy. Simulation results demonstrate that our framework provides precise AoI approximations and achieves significantly better performance, even in networks with a small number of users.more » « less
-
In urban environments, tall buildings or structures can pose limits on the direct channel link between a base station (BS) and an Internet-of-Thing device (IoTD) for wireless communication. Unmanned aerial vehicles (UAVs) with a mounted reconfigurable intelligent surface (RIS), denoted as UAV-RIS, have been introduced in recent works to enhance the system throughput capacity by acting as a relay node between the BS and the IoTDs in wireless access networks. Uncoordinated UAVs or RIS phase shift elements will make unnecessary adjustments that can significantly impact the signal transmission to IoTDs in the area. The concept of age of information (AoI) is proposed in wireless network research to categorize the freshness of the received update message. To minimize the average sum of AoI (ASoA) in the network, two model-free deep reinforcement learning (DRL) approaches – Off-Policy Deep Q-Network (DQN) and On-Policy Proximal Policy Optimization (PPO) – are developed to solve the problem by jointly optimizing the RIS phase shift, the location of the UAV-RIS, and the IoTD transmission scheduling for large-scale IoT wireless networks. Analysis of loss functions and extensive simulations is performed to compare the stability and convergence performance of the two algorithms. The results reveal the superiority of the On-Policy approach, PPO, over the Off-Policy approach, DQN, in terms of stability, convergence speed, and under diverse environment settingsmore » « less
-
We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t, which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations fresh. Information freshness is captured by the Age of Information (AoI) metric. In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results show that the performance of the Max-Weight policy is close to the analytical lower bound.more » « less
An official website of the United States government

