skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Second-Order Analysis of CSMA Protocols for Age-of-Information Minimization
This paper introduces a general framework to analyze and optimize age-of-information (AoI) in CSMA protocols for distributed uplink transmissions. The proposed framework combines two theoretical approaches. First, it employs second-order analysis that characterizes all random processes by their respective means and temporal variances and approximates AoI as a function of the mean and temporal variance of the packet delivery process. Second, it employs mean-field approximation to derive the mean and temporal variance of the packet delivery process for one node in the presence of interference from others. To demonstrate the utility of this framework, this paper applies it to the age-threshold ALOHA policy and identifies parameter settings that outperform those previously suggested as optimal in the original work that introduced this policy. Simulation results demonstrate that our framework provides precise AoI approximations and achieves significantly better performance, even in networks with a small number of users.  more » « less
Award ID(s):
2332800 2127721
PAR ID:
10600085
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISSN:
2576-2303
ISBN:
979-8-3503-5405-8
Page Range / eLocation ID:
126 to 130
Format(s):
Medium: X
Location:
Pacific Grove, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces a new theoretical framework for optimizing second-order behaviors of wireless networks. Unlike existing techniques for network utility maximization, which only consider first-order statistics, this framework models every random process by its mean and temporal variance. The inclusion of temporal variance makes this framework well-suited for modeling Markovian fading wireless channels and emerging network performance metrics such as age-of-information (AoI) and timely-throughput. Using this framework, we sharply characterize the second-order capacity region of wireless access networks. We also propose a simple scheduling policy and prove that it can achieve every interior point in the second-order capacity region. To demonstrate the utility of this framework, we apply it to an unsolved network optimization problem where some clients wish to minimize AoI while others wish to maximize timely-throughput. We show that this framework accurately characterizes AoI and timely-throughput. Moreover, it leads to a tractable scheduling policy that outperforms other existing work. 
    more » « less
  2. This paper studies the “age of information” (AoI) in a multi-source status update system where N active sources each send updates of their time-varying process to a monitor through a server with packet delivery errors. We analyze the average AoI for stationary randomized and round-robin scheduling policies. For both of these scheduling policies, we further analyze the effect of packet retransmission policies, i.e., retransmission without re- sampling, retransmission with resampling, or no retransmission, when errors occur. Expressions for the average AoI are derived for each case. It is shown that the round-robin schedule policy in conjunction with retransmission with resampling when errors occur achieves the lowest average AoI among the considered cases. For stationary randomized schedules with equiprobable source selection, it is further shown that the average AoI gap to round-robin schedules with the same packet management policy scales as O(N). Finally, for stationary randomized policies, the optimal source selection probabilities that minimize a weighted sum average AoI metric are derived. 
    more » « less
  3. Age of information (AoI) is a recently proposed metric for measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in wireless networks under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest. 
    more » « less
  4. Time-critical applications, such as virtual reality and cyber-physical systems, require not only low end-to-end latency, but also the timely delivery of information. While high-speed Ethernet adoption has reduced interconnect fabric latency, bottlenecks persist in data storage, retrieval, and processing. This work examines status updating systems where sources generate time-stamped updates that are stored in memory, and readers fulfill client requests by accessing these stored updates. Clients then utilize the retrieved updates for further computations. The asynchronous interaction between writers and readers presents challenges, including: (i) the potential for readers to encounter stale updates due to temporal disparities between the writing and reading processes, (ii) the necessity to synchronize writers and readers to prevent race conditions, and (iii) the imperative for clients to process and deliver updates within strict temporal constraints. In the first part, we study optimal reading policies in both discrete and continuous time domains to minimize the Age of Information (AoI) of source updates at the client. One of the main contributions of this part includes showing that lazy reading is timely. In the second part, we analyze the impact of synchronization primitives on update timeliness in a packet forwarding scenario, where location updates are written to a shared routing table, and application updates read from it to ensure correct delivery. Our theoretical and experimental results show that using a lock-based primitive is suitable for timely application update delivery at higher location update rates, while a lock-free mechanism is more effective at lower rates. The final part focuses on optimizing update processing when updates require multiple sequential computational steps. We compare the age performance across a multitude of pipelined and parallel server models and characterize the age-power trade-off in these models. Additionally, our analysis reveals that synchronous sequential processing is more conducive to timely update processing than asynchronous methods, and that parallel processing outperforms pipeline services in terms of AoI. 
    more » « less
  5. We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t, which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations fresh. Information freshness is captured by the Age of Information (AoI) metric. In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results show that the performance of the Max-Weight policy is close to the analytical lower bound. 
    more » « less