Abstract Tidal and wind-driven near-inertial currents play a vital role in the changing Arctic climate and the marine ecosystems. We compiled 429 available moored current observations taken over the last two decades throughout the Arctic to assemble a pan-Arctic atlas of tidal band currents. The atlas contains different tidal current products designed for the analysis of tidal parameters from monthly to inter-annual time scales. On shorter time scales, wind-driven inertial currents cannot be analytically separated from semidiurnal tidal constituents. Thus, we include 10–30 h band-pass filtered currents, which include all semidiurnal and diurnal tidal constituents as well as wind-driven inertial currents for the analysis of high-frequency variability of ocean dynamics. This allows for a wide range of possible uses, including local case studies of baroclinic tidal currents, assessment of long-term trends in tidal band kinetic energy and Arctic-wide validation of ocean circulation models. This atlas may also be a valuable tool for resource management and industrial applications such as fisheries, navigation and offshore construction.
more »
« less
Detecting Instantaneous Tidal Signals in Ocean Models Utilizing Streaming Band‐Pass Filters
Abstract Through the implementation of a streaming filter, output of numerical ocean simulations can be band‐pass filtered at tidal frequencies while the model is running, yielding time series of sinusoidal motions consisting of tidal signals in the filter's target frequency band. The filtering algorithm is developed from a system of two ordinary differential equations that represents the motion of a damped harmonic oscillator. The filter's response to a broadband input signal is unity at its target frequency but vanishes toward the low and high frequency limits. The decay of the filter response is controlled by a dimensionless parameter, which determines the filter's bandwidth. As a result, the filter allows signals within a small frequency band around its target frequency to pass through, while blocking signals outside of its target frequency band. In this work, the filtering algorithm is implemented into the barotropic solver of the Modular Ocean Model version 6 (MOM6) for determining the instantaneous tidal velocities of the semi‐diurnal and diurnal tides. Utilizing the filters, the frequency‐dependent internal wave drag is applied to the semi‐diurnal and diurnal frequency bands separately. The simulation results suggest that the performance of the algorithm is consistent with the filter transfer function in Fourier space. Potential applications of the algorithm also include de‐tiding the model output for nested regional ocean models, especially those for the purpose of operational forecasting.
more »
« less
- Award ID(s):
- 2102740
- PAR ID:
- 10600053
- Publisher / Repository:
- Journal of Advances in Modeling the Earth System
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 16
- Issue:
- 10
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dynamic spectrum access relies fundamentally on the ability to tune radio transceivers to frequencies that are deemed to be available. Consequently, radio hardware must support tuning over a wide range of frequencies. For the receiver, this precludes the use of fixed frontend filters to reject out-of-band interfering signals. Instead, widely tunable receivers rely on filtering after down-conversion either at IF or baseband. This approach relies on linearity and an ideal mixer to keep the desired signal and interfering signals separated. However, practical receivers exhibit non-linearity, phase noise, and oscillator spurs that cause mixing of the signal of interest and interfering signals. As a result, portions of the interfering signals may appear in the band of the desired signal; this causes interference that cannot be mitigated by filtering. Synthetic diversity mitigates this problem by combining analog and digital processing techniques. In the analog domain, the wide-band RF signal is passed through a passive, lossless multi-port diversity network. Each output from this network is then down-converted and digitized so that multiple versions of the signal are available at digital baseband. As the desired signal and the interfering signals experience different frequency response as they pass through the diversity network, it is possible to employ beam forming methods in digital baseband processing to mitigate the interfering signals while preserving the desired signal. The performance of the proposed synthetic diversity receiver is analyzed and it is shown that excellent interference rejection can be achieved. Rejection performance can be increased even further when the circuit elements in the diversity network can be adapted.more » « less
-
Abstract In this study, we diagnose the spatial variability in the energetics of tidally generated diurnal, semidiurnal, and supertidal ( cycles per day) internal wave vertical modes (up to mode 6) in a 30‐day forward global ocean model simulation with a 4‐km grid spacing and 41 layers. The simulation is forced with realistic tides and atmospheric fields. Diurnal modes are resolved beyond mode 6, semidiurnal modes are resolved up to mode 4, and supertidal modes are resolved up to mode 2, in agreement with a canonical horizontal resolution criterion. The meridional trends in the kinetic to available potential energy ratios of these resolved modes agree with an internal wave consistency relation. The supertidal band is dominated by the higher harmonics of the diurnal and semidiurnal tides. Its higher harmonic energy projects on the internal wave dispersion curves in frequency‐wavenumber spectra and is captured mostly by the terdiurnal and quarterdiurnal mode‐1 waves. Terdiurnal modes are mostly generated in the west Pacific, where diurnal internal tides are strong. In contrast, quarterdiurnal modes occur at all longitudes near strong semidiurnal generation sites. The globally integrated energy in the supertidal band is about one order of magnitude smaller than the energy in the tidal band. The supertidal energy as a fraction of the tidal energy is elevated along semidiurnal internal wave beams in the tropics. We attribute this to near‐resonant interactions between tidal modes of the same mode number.more » « less
-
The design of mixed-technology quasi-reflectionless planar bandpass filters (BPFs), bandstop filters (BSFs), and multi-band filters is reported. The proposed quasi-reflectionless filter architectures comprise a main filtering section that determines the power transmission response (bandpass, bandstop, or multi-band type) of the overall circuit network and auxiliary sections that absorb the reflected radio-frequency (RF) signal energy. By loading the input and output ports of the main filtering section with auxiliary filtering sections that exhibit a complementary transfer function with regard to the main one, a symmetric quasi-reflectionless behavior can be obtained at both accesses of the overall filter. The operating principles of the proposed filter concept are shown through synthesized first-order BPF and BSF designs. Selectivity-increase techniques are also described. They are based on: (i) cascading in-series multiple first-order stages and (ii) increasing the order of the filtering sections. Moreover, the RF design of quasi-reflectionless multi-band BPFs and BSFs is discussed. A hybrid integration scheme in which microstrip-type and lumped-elements are effectively combined within the filter volume is investigated for size miniaturization purposes. For experimental validation purposes, two quasi-reflectionless BPF prototypes (one- and two-stage architectures) centered at 2 GHz and a second-order BSF prototype centered at 1 GHz were designed, manufactured, and measured.more » « less
-
Abstract This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The Zn2Yfilter demonstrated magnetic field tunability in the 8–12 GHz frequency range by applying an in-plane bias magnetic fieldH0provided by a built-in permanent magnet. The insertion loss and 3 dB bandwidth within this band were 8.6 ± 0.4 dB and 350 ± 40 MHz, respectively. The electric fieldEtunability of the pass-band of the device was facilitated by the nonlinear magnetoelectric effect (NLME) in the ferrite. TheE-tuning of the center frequency of the filter by (1150 ± 90) MHz was obtained for an input DC electric power of 200 mW. With efforts directed at a significant reduction in the insertion loss, the compact and power efficient magnetic and electric field tunable Zn2Y band-pass filter has the potential for use in novel reconfigurable RF/microwave devices and communication systems.more » « less
An official website of the United States government

