Abstract BackgroundBud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch’s Broom bud sport occurs occasionally in various grapevine (Vitis vinifera) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch’s Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch’s Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets. ResultsThe Dakapo and Merlot cases of Witch’s Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch’s Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968–974 unique genetic mutations in our two Witch’s Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch’s Broom impacting the gene GSVIVG01008260001. ConclusionsThe Witch’s Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch’s Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine.
more »
« less
grenedalf: population genetic statistics for the next generation of pool sequencing
Abstract SummaryPool sequencing is an efficient method for capturing genome-wide allele frequencies from multiple individuals, with broad applications such as studying adaptation in Evolve-and-Resequence experiments, monitoring of genetic diversity in wild populations, and genotype-to-phenotype mapping. Here, we present grenedalf, a command line tool written in C++ that implements common population genetic statistics such as θ, Tajima’s D, and FST for Pool sequencing. It is orders of magnitude faster than current tools, and is focused on providing usability and scalability, while also offering a plethora of input file formats and convenience options. Availability and implementationgrenedalf is published under the GPL-3, and freely available at github.com/lczech/grenedalf.
more »
« less
- Award ID(s):
- 2419923
- PAR ID:
- 10600056
- Editor(s):
- Schwartz, Russell
- Publisher / Repository:
- The journal Bioinformatics is published by Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 40
- Issue:
- 8
- ISSN:
- 1367-4811
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Genetic determinants of global developmental delay and intellectual disability in Ukrainian childrenAbstract BackgroundGlobal developmental delay or intellectual disability usually accompanies various genetic disorders as a part of the syndrome, which may include seizures, autism spectrum disorder and multiple congenital abnormalities. Next-generation sequencing (NGS) techniques have improved the identification of pathogenic variants and genes related to developmental delay. This study aimed to evaluate the yield of whole exome sequencing (WES) and neurodevelopmental disorder gene panel sequencing in a pediatric cohort from Ukraine. Additionally, the study computationally predicted the effect of variants of uncertain significance (VUS) based on recently published genetic data from the country’s healthy population. MethodsThe study retrospectively analyzed WES or gene panel sequencing findings of 417 children with global developmental delay, intellectual disability, and/or other symptoms. Variants of uncertain significance were annotated using CADD-Phred and SIFT prediction scores, and their frequency in the healthy population of Ukraine was estimated. ResultsA definitive molecular diagnosis was established in 66 (15.8%) of the individuals. WES diagnosed 22 out of 37 cases (59.4%), while the neurodevelopmental gene panel identified 44 definitive diagnoses among the 380 tested patients (12.1%). Non-diagnostic findings (VUS and carrier) were reported in 350 (83.2%) individuals. The most frequently diagnosed conditions were developmental and epileptic encephalopathies associated with severe epilepsy and GDD/ID (associated genesARX, CDKL5, STXBP1, KCNQ2, SCN2A, KCNT1, KCNA2). Additionally, we annotated 221 VUS classified as potentially damaging, AD or X-linked, potentially increasing the diagnostic yield by 30%, but 18 of these variants were present in the healthy population of Ukraine. ConclusionsThis is the first comprehensive study on genetic causes of GDD/ID conducted in Ukraine. This study provides the first comprehensive investigation of the genetic causes of GDD/ID in Ukraine. It presents a substantial dataset of diagnosed genetic conditions associated with GDD/ID. The results support the utilization of NGS gene panels and WES as first-line diagnostic tools for GDD/ID cases, particularly in resource-limited settings. A comprehensive approach to resolving VUS, including computational effect prediction, population frequency analysis, and phenotype assessment, can aid in further reclassification of deleterious VUS and guide further testing in families.more » « less
-
IntroductionRecent advances in genetic data collection utilizing next-generation DNA sequencing technologies have the potential to greatly aid the taxonomic assessment of species of conservation concern, particularly species that have been difficult to describe using morphology alone. Accurate taxonomic descriptions aided by genetic data are essential to directing limited conservation resources to species most in need.Sclerocactus glaucusis a plant endemic to Western Colorado that is currently listed as Threatened under the Endangered Species Act (ESA). However, in 2023, the U. S. Fish and Wildlife Service proposed de-listingS. glaucusfrom the ESA due to recovery of the species. Previous research had found substantial genetic structure between populations in the northern part of theS. glaucusrange relative to the majority of the species distribution. MethodsIn this study we utilized double-digest Restriction-site Associated DNA sequencing (RAD-seq) in order to better understand the genetic structure ofS. glaucus. ResultsOur results indicate thatS. glaucuscontains two distinct evolutionary lineages that warrant recognition at the level of species, with what was previously described asS. glaucusNorth being recognized asSclerocactus dawsoniae. DiscussionThe newly describedS. dawsoniaehas a limited estimated number of individuals, low levels of nucleotide diversity, a very narrow geographic range, and an uneven geographic distribution with most plants being found in a single management area, all of which supports continued direct conservation of this species. In contrast,S. glaucushas a large estimated minimum population size, a broad geographic range that includes numerous protected areas, and adequate levels of genetic diversity. Without further conservation action, a delisting decision forS. glaucuswill simultaneously remove all Endangered Species Act protections forS. dawsoniae. The current work demonstrates the importance of having robust genetic datasets when planning conservation activities for species of concern. Moving forward, we recommend that government stakeholders prioritize supporting genetic studies of endangered species prior to making any changes to listing decisions.more » « less
-
Abstract Botrytis cinereaPers. Fr. (teleomorph:Botryotinia fuckeliana) is a necrotrophic fungal pathogen that attacks a wide range of plants. This updated pathogen profile explores the extensive genetic diversity ofB. cinerea, highlights the progress in genome sequencing, and provides current knowledge of genetic and molecular mechanisms employed by the fungus to attack its hosts. In addition, we also discuss recent innovative strategies to combatB. cinerea. TaxonomyKingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus:Botrytis, species:cinerea. Host rangeB. cinereainfects almost all of the plant groups (angiosperms, gymnosperms, pteridophytes, and bryophytes). To date, 1606 plant species have been identified as hosts ofB. cinerea. Genetic diversityThis polyphagous necrotroph has extensive genetic diversity at all population levels shaped by climate, geography, and plant host variation. PathogenicityGenetic architecture of virulence and host specificity is polygenic using multiple weapons to target hosts, including secretory proteins, complex signal transduction pathways, metabolites, and mobile small RNA. Disease control strategiesEfforts to controlB. cinerea, being a high‐diversity generalist pathogen, are complicated. However, integrated disease management strategies that combine cultural practices, chemical and biological controls, and the use of appropriate crop varieties will lessen yield losses. Recently, studies conducted worldwide have explored the potential of small RNA as an efficient and environmentally friendly approach for combating grey mould. However, additional research is necessary, especially on risk assessment and regulatory frameworks, to fully harness the potential of this technology.more » « less
-
Abstract BackgroundDe novo phased (haplo)genome assembly using long-read DNA sequencing data has improved the detection and characterization of structural variants (SVs) in plant and animal genomes. Able to span across haplotypes, long reads allow phased, haplogenome assembly in highly outbred organisms such as forest trees. Eucalyptus tree species and interspecific hybrids are the most widely planted hardwood trees with F1 hybrids of Eucalyptus grandis and E. urophylla forming the bulk of fast-growing pulpwood plantations in subtropical regions. The extent of structural variation and its effect on interspecific hybridization is unknown in these trees. As a first step towards elucidating the extent of structural variation between the genomes of E. grandis and E. urophylla, we sequenced and assembled the haplogenomes contained in an F1 hybrid of the two species. FindingsUsing Nanopore sequencing and a trio-binning approach, we assembled the separate haplogenomes (566.7 Mb and 544.5 Mb) to 98.0% BUSCO completion. High-density SNP genetic linkage maps of both parents allowed scaffolding of 88.0% of the haplogenome contigs into 11 pseudo-chromosomes (scaffold N50 of 43.8 Mb and 42.5 Mb for the E. grandis and E. urophylla haplogenomes, respectively). We identify 48,729 SVs between the two haplogenomes providing the first detailed insight into genome structural rearrangement in these species. The two haplogenomes have similar gene content, 35,572 and 33,915 functionally annotated genes, of which 34.7% are contained in genome rearrangements. ConclusionsKnowledge of SV and haplotype diversity in the two species will form the basis for understanding the genetic basis of hybrid superiority in these trees.more » « less
An official website of the United States government

