skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gelation Dynamics in Polydimethylsiloxane Bottlebrush Elastomers
Abstract Network formation in elastomers with grafted side chains is investigated to understand the entanglement‐free nature of the bottlebrush architecture. Competition between elastically effective cross‐linkers and dangling side chains creates a unique environment where reaction kinetics and steric effects dictate network percolation. The evolving viscoelasticity of linear and bottlebrush networks with an equivalent number of cross‐linkers to backbones is measured during a catalytic curing reaction using time‐resolved rheology. The impact of reaction kinetics on network formation is addressed through the sol−gel transition by tuning catalyst concentration. Solidification falls into a rate‐limited regime where the modulus growth rate increases with increasing catalyst. The network formation process remains independent of the cure rate in the bottlebrush and linear systems. Side chains significantly decrease the fractal dimension of the critical gel cluster despite a comparable number of cross‐links. Time‐cure superposition is applied to quantify dynamics in the pre‐ and post‐gel states. The divergence of the shift factors around the gel point is independent of cure kinetics. The collapse of shift factors in the post‐gel region further suggests the universality of the network formation process. The approach to understanding internal structure development during processing will be critical as bottlebrush elastomers are utilized among a wide range of applications.  more » « less
Award ID(s):
2326933
PAR ID:
10600128
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
46
Issue:
14
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since the invention of polymer networks such as cross-linked natural rubber in the 19th century, it has been a dogma that stiffer networks are less stretchable. We report a universal strategy for decoupling the stiffness and extensibility of single-network elastomers. Instead of using linear polymers as network strands, we use foldable bottlebrush polymers, which feature a collapsed backbone grafted with many linear side chains. Upon elongation, the collapsed backbone unfolds to release stored length, enabling remarkable extensibility. By contrast, the network elastic modulus is inversely proportional to network strand mass and is determined by the side chains. We validate this concept by creating single-network elastomers with nearly constant Young’s modulus (30 kilopascals) while increasing tensile breaking strain by 40-fold, from 20 to 800%. We show that this strategy applies to networks of different polymer species and topologies. Our discovery opens an avenue for developing polymeric materials with extraordinary mechanical properties. 
    more » « less
  2. Bottlebrush (BB) elastomers with water-soluble side chains and tissue-mimetic mechanical properties are promising for biomedical applications like tissue implants and drug depots. This work investigates the microstructure and phase transitions of BB elastomers with crystallizable polyethylene oxide (PEO) side chains by real-time synchrotron X-ray scattering. In the melt, the elastomers exhibit the characteristic BB peak corresponding to the backbone-to-backbone correlation. This peak is a distinct feature of BB systems and is observable in small- or medium-angle X-ray scattering curves. In the systems studied, the position of the BB peak ranges from 3.6 to 4.8 nm in BB elastomers. This variation is associated with the degree of polymerization of the polyethylene oxide (PEO) side chains, which ranges from 19 to 40. Upon crystallization of the side chains, the intensity of the peak decays linearly with crystallinity and eventually vanishes due to BB packing disordering within intercrystalline amorphous gaps. This behavior of the bottlebrush peak differs from an earlier study of BBs with poly(ε-caprolactone) side chains, explained by stronger backbone confinement in the case of PEO, a high-crystallinity polymer. Microstructural models based on 1D SAXS correlation function analysis suggest crystalline lamellae of PEO side chains separated by amorphous gaps of monolayer-like BB backbones. 
    more » « less
  3. Brush-like elastomers with crystallizable side chains hold promise for biomedical applications requiring the presence of two distinct mechanical states below and above body temperature: hard and supersoft. The hard semicrystalline state facilitates piercing of the body whereupon the material softens to match the mechanics of surrounding soft tissue. To understand the transition between the two states, the crystallization process was studied with synchrotron X-ray scattering for a series of brush elastomers with poly(ε-caprolactone) side chains bearing from 7 to 13 repeat units. The so-called bottlebrush correlation peak was used to monitor configuration of bottlebrush backbones in the amorphous regions during the crystallization process. In the course of crystallization, the backbones are expelled into the interlamellar amorphous gaps, which is accompanied by their conformational changes and leads to partitioning to unconfined (melt) and confined (semicrystalline) (conformational) states. The crystallization process starts by consumption of the unconfined macromolecules by the growing crystals followed by reconfiguration of macromolecules within the already grown spherulites. 
    more » « less
  4. <sc>A</sc>bstract We introduce a simple synthetic strategy to selectively degrade bottlebrush networks derived from well‐defined poly(4‐methylcaprolactone) (P4MCL) bottlebrush polymers. Functionalization of the hydroxyl groups present at the terminal ends of P4MCL side chains withα‐lipoic acid resulted in bottlebrush polymers having a range of molecular weights (Mn = 45–2200 kg mol−1) and a tunable number of reactive dithiolane chain ends. These functionalized chain ends act as efficient crosslinkers due to radical ring‐opening of the dithiolane rings under UV light. The resulting redox‐active disulfide crosslinks enable mild electrochemical or chemical degradation of the SS crosslinks to regenerate the starting bottlebrush polymer. P4MCL side chains and the disulfides can be degraded simultaneously using harsher reducing conditions. This combination of bottlebrush architecture with facile disulfide crosslinking presents a versatile platform for preparing highly tunable elastomers that undergo controlled degradation under mild conditions. 
    more » « less
  5. Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer additives can be used to control the interfacial properties of blends with linear polymers but has not specifically addressed the effects of bottlebrush side chain microstructures. Here, using a combination of experiments and self-consistent field theory (SCFT) simulations, we investigated the effects of side chain microstructures by comparing the segregation of bottlebrush additives having random copolymer side chains with bottlebrush additives having a mixture of two different homopolymer side chain chemistries. Specifically, we synthesized bottlebrush polymers with either poly(styrene- ran -methyl methacrylate) side chains or with a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains. The bottlebrush additives were matched in terms of PS and PMMA compositions, and they were blended with linear PS or PMMA chains that ranged in length from shorter to longer than the bottlebrush side chains. Experiments revealed similar behaviors of the two types of bottlebrushes, with a slight preference for mixed side-chain bottlebrushes at the film surface. SCFT simulations were qualitatively consistent with experimental observations, predicting only slight differences in the segregation of bottlebrush additives driven by side chain microstructures. Specifically, these slight differences were driven by the chemistries of the bottlebrush polymer joints and side chain end-groups, which were entropically repelled and attracted to interfaces, respectively. Using SCFT, we also demonstrated that the interfacial behaviors were dominated by entropic effects with high molecular weight linear polymers, leading to enrichment of bottlebrush near interfaces. Surprisingly, the SCFT simulations showed that the chemistry of the joints connecting the bottlebrush backbones and side chains played a more significant role compared with the side chain end groups in affecting differences in surface excess of bottlebrushes with random and mixed side chains. This work provides new insights into the effects of side chain microstructure on segregation of bottlebrush polymer additives. 
    more » « less