skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gross oxygen production and microbial community respiration in the oligotrophic ocean
Abstract Uncertainties in the temporal and spatial patterns of marine primary production and respiration limit our understanding of the ocean carbon (C) cycle and our ability to predict its response to environmental changes. Here we present a comprehensive time‐series analysis of plankton metabolism at the Hawaii Ocean Time‐series program site, Station ALOHA, in the North Pacific Subtropical Gyre. Vertical profiles of gross oxygen production (GOP) and community respiration (CR) were quantified using the18O‐labeled water method together with net changes in O2to Ar ratios during dawn to dusk in situ incubations. Rates of14C‐bicarbonate assimilation (14C‐based primary production [14C‐PP]) were also determined concurrently. During the observational period (April 2015 to July 2020), euphotic zone depth‐integrated (0–125 m) GOP and14C‐PP ranged from 35 to 134 mmol O2m−2d−1and 18 to 75 mmol C m−2d−1, respectively, while CR ranged from 37 to 187 mmol O2m−2d−1. All biological rates varied with depth and season, with seasonality most pronounced in the lower portion of the euphotic zone (75–125 m). The mean annual ratio of GOP to14C‐PP was 1.7 ± 0.1 mol O2(mol C)−1. While previous studies have reported convergence of GOP and14C‐PP with depth, we find a less pronounced vertical decline in the GOP to14C‐PP ratios, with GOP exceeding14C‐PP by 50% or more in the lower euphotic zone. Variability in CR was higher than for GOP, driving most of the variability in the balance between the two.  more » « less
Award ID(s):
2241005
PAR ID:
10600141
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
70
Issue:
5
ISSN:
0024-3590
Format(s):
Medium: X Size: p. 1236-1251
Size(s):
p. 1236-1251
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Heterotrophic prokaryotic production (BP) was studied in the western tropical South Pacific (WTSP) using the leucine technique, revealing spatial and temporal variability within the region. Integrated over the euphotic zone, BP ranged from 58 to 120mg Cm−2d−1 within the Melanesian Archipelago, and from 31 to 50mg Cm−2d−1 within the western subtropical gyre. The collapse of a bloom was followed during 6 days in the south of Vanuatu using a Lagrangian sampling strategy. During this period, rapid evolution was observed in the three main parameters influencing the metabolic state: BP, primary production (PP) and bacterial growth efficiency. With N2 fixation being one of the most important fluxes fueling new production, we explored relationships between BP, PP and N2 fixation rates over the WTSP. The contribution of N2 fixation rates to bacterial nitrogen demand ranged from 3 to 81%. BP variability was better explained by the variability of N2 fixation rates than by that of PP in surface waters of the Melanesian Archipelago, which were characterized by N-depleted layers and low DIP turnover times (TDIP<100h). This is consistent with the fact that nitrogen was often one of the main factors controlling BP on short timescales, as shown using enrichment experiments, followed by dissolved inorganic phosphate (DIP) near the surface and labile organic carbon deeper in the euphotic zone. However, BP was more significantly correlated with PP, but not with N2 fixation rates where DIP was more available (TDIP>100h), deeper in the Melanesian Archipelago, or within the entire euphotic zone in the subtropical gyre. The bacterial carbon demand to gross primary production ratio ranged from 0.75 to 3.1. These values are discussed in the framework of various assumptions and conversion factors used to estimate this ratio, including the methodological errors, the daily variability of BP, the bacterial growth efficiency and one bias so far not considered: the ability for Prochlorococcus to assimilate leucine in the dark. 
    more » « less
  2. Abstract In aquatic ecosystems, allochthonous nutrient transport to the euphotic zone is an important process that fuels new production. Here, we use high‐resolution physical and biogeochemical observations from five summers to estimate the mean vertical nitrate flux, and thus new production over the Northeast U.S. Shelf (NES). We find that the summertime nitrate field is primarily controlled by biological uptake and physical advection–diffusion processes, above and below the 1% light level depth, respectively. We estimate the vertical nitrate flux to be 8.2 ± 5.3 × 10−6 mmol N m−2 s−1for the mid‐shelf and 12.6 ± 8.6 × 10−6 mmol N m−2 s−1for the outer shelf. Furthermore, we show that the new production to total primary production ratio (i.e., the f‐ratio), consistently ranges between 10% and 15% under summer conditions on the NES. Two independent approaches—nitrate flux‐based new production and O2/Ar‐based net community production—corroborate the robustness of the f‐ratio estimation. Since ~ 85% of the total primary production is fueled by recycled nutrients over sufficiently broad spatial and temporal scales, less than 15% of the organic matter produced in summer is available for export from the NES euphotic zone. Our direct quantification of new production not only provides more precise details about key processes for NES food webs and ecosystem function, but also demonstrates the potential of this approach to be applied to other similar datasets to understand nutrient and carbon cycling in the global ocean. 
    more » « less
  3. Abstract River metabolism and, thus, carbon cycling are governed by gross primary production and ecosystem respiration. Traditionally river metabolism is derived from diel dissolved oxygen concentrations, which cannot resolve diel changes in ecosystem respiration. Here, we compare river metabolism derived from oxygen concentrations with estimates from stable oxygen isotope signatures (δ18O2) from 14 sites in rivers across three biomes using Bayesian inverse modeling. We find isotopically derived ecosystem respiration was greater in the day than night for all rivers (maximum change of 113 g O2 m−2 d−1, minimum of 1 g O2 m−2 d−1). Temperature (20 °C) normalized rates of ecosystem respiration and gross primary production were 1.1 to 87 and 1.5 to 22-fold higher when derived from oxygen isotope data compared to concentration data. Through accounting for diel variation in ecosystem respiration, our isotopically-derived rates suggest that ecosystem respiration and microbial carbon cycling in rivers is more rapid than predicted by traditional methods. 
    more » « less
  4. Abstract The eastern Indian Ocean is substantially under sampled with respect to the biological carbon pump – the suite of processes that transport the carbon fixed by phytoplankton into the deeper ocean. Using sediment traps and other ecosystem measurements, we quantified sinking organic matter flux and investigated the characteristics of sinking particles in waters overlying the Argo Abyssal Plain directly downstream of the Indonesian Throughflow off northwest Australia. Carbon export from the euphotic zone averaged 7.0 mmol C m-2d-1, which equated to an average export efficiency (export / net primary production) of 0.17. Sinking particle flux within the euphotic zone (beneath the mixed layer, but above the deep chlorophyll maximum) averaged slightly higher than flux at the base of the euphotic zone, suggesting that the deep euphotic zone was a depth stratum of net particle remineralization. Carbon flux attenuation continued into the twilight zone with a transfer efficiency (export at euphotic depth + 100m / export at euphotic depth) of 0.62 and an average Martin’sb-value of 1.1. Within the euphotic zone, fresh phytoplankton (chlorophyll associated with sinking particles, possibly contained within appendicularian houses) were an important component of sinking particles, but beneath the euphotic zone the fecal pellets of herbivorous zooplankton (phaeopigments) were more important. Changes in carbon and nitrogen isotopic composition with depth further reflected remineralization processes occurring as particles sank. We show similarities with biological carbon pump functioning in a similar semi-enclosed oligotrophic marginal sea, the Gulf of Mexico, including net remineralization across the deep chlorophyll maximum. Submitted to: Deep-sea Research II HighlightsDespite low productivity, export efficiency was 17% of primary productionFlux attenuation beneath the euphotic zone (EZ) was low for a tropical regionSinking particle flux from the upper to lower EZ exceeded export from lower EZThe deep EZ was a stratum of net particle remineralization (and net heterotrophy) 
    more » « less
  5. Dolan, John (Ed.)
    Abstract During two cruises in the oligotrophic oceanic Gulf of Mexico, we deployed sediment traps at three depths: center of the euphotic zone (EZ) (60 m), base of the EZ (117–151 m), and in the twilight zone (231 m). Organic carbon export declined with depth from 6.4 to 4.6 to 2.4 mmol C m−2 d−1, suggesting that net particle production was concentrated in the upper EZ. Net primary production varied from 24 to 29 mmol C m−2 d−1, slightly more than half in the upper EZ. Export ratios varied from 11 to 25%. Trap measurements of chlorophyll and phaeopigments allowed us to quantify fluxes of fresh phytoplankton and herbivorous fecal pellets, respectively, which were both minor contributors to total flux, although their contributions varied with depth. Phytoplankton flux was more important from the upper to lower EZ; fecal pellets were more important at the EZ base and below. C:N elemental ratios and 13C and 15N isotope analyses indicated particle transformations within and beneath the EZ. 234Th-238U disequilibrium measurements varied, likely reflecting the mixing of water from multiple regions over the ~month-long time-scale of 234Th. Our results highlight the complexity of the biological carbon pump in oligotrophic regions. 
    more » « less