Asymptotic giant branch stars are responsible for the production of most of the heavy isotopes beyond Sr observed in the solar system. Among them, isotopes shielded from the -process contribution by their stable isobars are defined as -only nuclei. For a long time the abundance of , the heaviest -only isotope, has been a topic of debate because state-of-the-art stellar models appeared to systematically underestimate its solar abundance. Besides the impact of uncertainties from stellar models and galactic chemical evolution simulations, this discrepancy was further obscured by rather divergent theoretical estimates for the neutron capture cross section of its radioactive precursor in the neutron-capture flow, ( ), and by the lack of experimental data on this reaction. We present the first ever neutron capture measurement on , conducted at the CERN neutron time-of-flight facility n_TOF, employing a sample of only 9 mg of produced at the Institute Laue Langevin high flux reactor. By complementing our new results with semiempirical calculations we obtained, at the -process temperatures of and , Maxwellian-averaged cross sections (MACS) of 580(168) mb and 260(90) mb, respectively. These figures are about 3% lower and 20% higher than the corresponding values widely used in astrophysical calculations, which were based only on theoretical calculations. By using the new MACS, the uncertainty arising from the cross section on the -process abundance of has been reduced from down to , and the -process calculations are in agreement with the latest solar system abundance of reported by K. Lodders in 2021. Published by the American Physical Society2024
more »
« less
This content will become publicly available on February 1, 2026
Demonstration of new MeV-scale capabilities in large neutrino LArTPCs using ambient radiogenic and cosmogenic activity in MicroBooNE
Large neutrino liquid argon time projection chamber (LArTPC) experiments can broaden their physics reach by reconstructing and interpreting MeV-scale energy depositions, or blips, present in their data. We demonstrate new calorimetric and particle discrimination capabilities at the MeV energy scale using reconstructed blips in data from the MicroBooNE LArTPC at Fermilab. We observe a concentration of low-energy ( ) blips around fiberglass mechanical support struts along the time projection chamber edges with energy spectrum features consistent with the Compton edge of 2.614 MeV decay rays. These features are used to verify proper calibration of electron energy scales in MicroBooNE’s data to few percent precision and to measure the specific activity of in the fiberglass composing these struts, . Cosmogenically produced blips above 3 MeV in reconstructed energy are used to showcase the ability of large LArTPCs to distinguish between low-energy proton and electron energy depositions. An enriched sample of low-energy protons selected using this new particle discrimination technique is found to be smaller in data than in dedicated cosmic-ray simulations, suggesting either incorrect modeling of incident cosmic fluxes or particle transport modeling issues in eant4. Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 2207171
- PAR ID:
- 10600379
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 3
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this Letter, the first evidence of the antihypernucleus is presented, along with the first measurement at the LHC of the production of (anti)hypernuclei with mass number , specifically and . In addition, the antiparticle-to-particle ratios for both hypernuclei ( and ) are shown, which are sensitive to the baryochemical potential of the strongly interacting matter created in heavy-ion collisions. The results are obtained from a data sample of central Pb-Pb collisions, collected during the 2018 LHC data taking at a center-of-mass energy per nucleon pair of . The yields measured for the average of the charge-conjugated states are found to be for the and for the , and the measured antiparticle-to-particle ratios are in agreement with unity. The presence of and excited states is expected to strongly enhance the production yield of these hypernuclei. The yield values exhibit a combined deviation of from the theoretical ground-state-only expectation, while the inclusion of the excited states in the calculations leads to an agreement within with the present measurements. Additionally, the measured and masses are compatible with the world-average values within the uncertainties. © 2025 CERN, for the ALICE Collaboration2025CERNmore » « less
-
We present the first measurement of cosmic-ray fluxes of and isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on and nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity range the and fluxes exhibit nearly identical time variations and, above , the time variations of , , He, Be, B, C, N, and O fluxes are identical. Above , we find an identical rigidity dependence of the and fluxes. This shows that they are both produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular, excludes the existence of a sizable primary component in the flux. Published by the American Physical Society2025more » « less
-
Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of the deuteron ( ) flux are presented. The measurements are based on nuclei in the rigidity range from 1.9 to 21 GV collected from May 2011 to April 2021. We observe that over the entire rigidity range the flux exhibits nearly identical time variations with the , , and fluxes. Above 4.5 GV, the flux ratio is time independent and its rigidity dependence is well described by a single power law with . This is in contrast with the flux ratio for which we find . Above we find a nearly identical rigidity dependence of the and fluxes with a flux ratio of . These unexpected observations indicate that cosmic deuterons have a sizable primarylike component. With a method independent of cosmic ray propagation, we obtain the primary component of the flux equal to of the flux and the secondary component of the flux equal to of the flux. Published by the American Physical Society2024more » « less
-
The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of nuclei in the ALICE experiment at the Large Hadron Collider are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron zero degree calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral collisions at a center-of-mass energy per nucleon pair . The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17–25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of . The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes . ©2025 CERN, for the ALICE Collaboration2025CERNmore » « less