skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 30, 2025

Title: 2d (0, 2) gauge theories from branes: Recent progress in brane brick models
We discuss the realization of 2d (0,2) gauge theories in terms of branes focusing on Brane Brick Models, which are T-dual to D1-branes probing toric Calabi-Yau 4-folds. These brane setups fully encode the infinite class of 2d (0,2) quiver gauge theories on the worldvolume of the D1-branes and substantially streamline their connection to the probed geometries. We review various methods for efficiently generating Brane Brick Models. These algorithms are then used to construct 2d (0,2) gauge theories for the cones over all the smooth Fano 3-folds and two infinite families of Sasaki-Einstein 7-manifolds with known metrics. This note is based on the author’s talk at the Gauged Linear Sigma Models @ 30 conference at the Simons Center for Geometry and Physics.  more » « less
Award ID(s):
2412479
PAR ID:
10600971
Author(s) / Creator(s):
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
International Journal of Modern Physics A
Volume:
39
Issue:
33
ISSN:
0217-751X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract Reflexive polytopes in n dimensions have attracted much attention both in mathematics and theoretical physics due to their connection to Fano n -folds and mirror symmetry. This work focuses on the 18 regular reflexive polytopes corresponding to smooth Fano 3-folds. For the first time, we show that all 18 regular reflexive polytopes have corresponding 2 d (0 , 2) gauge theories realized by brane brick models. These 2 d gauge theories can be considered as the worldvolume theories of D1-branes probing the toric Calabi-Yau 4-singularities whose toric diagrams are given by the associated regular reflexive polytopes. The generators of the mesonic moduli space of the brane brick models are shown to form a lattice of generators due to the charges under the rank 3 mesonic flavor symmetry. It is shown that the lattice of generators is the exact polar dual reflexive polytope to the corresponding toric diagram of the brane brick model. This duality not only highlights the close relationship between the geometry and 2 d gauge theory, but also opens up pathways towards new discoveries in relation to reflexive polytopes and brane brick models. 
    more » « less
  2. A bstract We introduce and initiate the study of a general class of 2 d $$ \mathcal{N} $$ N = (0, 2) quiver gauge theories, defined in terms of certain 2-dimensional CW complexes on oriented 3-manifolds. We refer to this class of theories as BFT 2 ’s. They are natural generalizations of Brane Brick Models, which capture the gauge theories on D1-branes probing toric Calabi-Yau 4-folds. The dynamics and triality of the gauge theories translate into simple transformations of the underlying CW complexes. We introduce various combinatorial tools for analyzing these theories and investigate their connections to toric Calabi-Yau manifolds, which arise as their master and moduli spaces. Invariance of the moduli space is indeed a powerful criterion for identifying theories in the same triality class. We also investigate the reducibility of these theories. 
    more » « less
  3. Generalized global symmetries, in particular non-invertible and categorical symmetries, have become a focal point in the recent study of quantum field theory (QFT). In this paper, we investigate aspects of symmetry topological field theories (SymTFTs) and anomalies of non-invertible symmetries for 2D QFTs from a string theory perspective. Our primary focus is on an infinite class of 2D QFTs engineered on D1-branes probing toric Calabi-Yau 4-fold singularities. We derive 3D SymTFTs from the topological sector of IIB supergravity and discuss the resulting 2D QFTs, which can be intrinsically relative or absolute. For intrinsically relative QFTs, we propose a sufficient condition for them to exist. For absolute QFTs, we show that they exhibit non-invertible symmetries with an elegant brane origin. Furthermore, we find that these non-invertible symmetries can suffer from anomalies, which we discuss from a top-down perspective. Explicit examples are provided, including theories for including theories for Y(p,k)(ℙ2), Y(2,0)(ℙ1×ℙ1), and ℂ4/ℤ4 geometries. 
    more » « less
  4. A bstract We present a new, geometric perspective on the recently proposed triality of 2d $$ \mathcal{N} $$ N = (0 , 1) gauge theories, based on its engineering in terms of D1-branes probing Spin(7) orientifolds. In this context, triality translates into the fact that multiple gauge theories correspond to the same underlying orientifold. We show how Spin(7) orientifolds based on a particular involution, which we call the universal involution, give rise to precisely the original version of $$ \mathcal{N} $$ N = (0 , 1) triality. Interestingly, our work also shows that the space of possibilities is significantly richer. Indeed, general Spin(7) orientifolds extend triality to theories that can be regarded as consisting of coupled $$ \mathcal{N} $$ N = (0 , 2) and (0 , 1) sectors. The geometric construction of 2d gauge theories in terms of D1-branes at singularities therefore leads to extensions of triality that interpolate between the pure $$ \mathcal{N} $$ N = (0 , 2) and (0 , 1) cases. 
    more » « less
  5. A bstract We initiate the geometric engineering of 2d $$ \mathcal{N} $$ N = (0 , 1) gauge theories on D1-branes probing singularities. To do so, we introduce a new class of backgrounds obtained as quotients of Calabi-Yau 4-folds by a combination of an anti-holomorphic involution leading to a Spin(7) cone and worldsheet parity. We refer to such constructions as Spin(7) orientifolds . Spin(7) orientifolds explicitly realize the perspective on 2d $$ \mathcal{N} $$ N = (0 , 1) theories as real slices of $$ \mathcal{N} $$ N = (0 , 2) ones. Remarkably, this projection is geometrically realized as Joyce’s construction of Spin(7) manifolds via quotients of Calabi-Yau 4-folds by anti-holomorphic involutions. We illustrate this construction in numerous examples with both orbifold and non-orbifold parent singularities, discuss the role of the choice of vector structure in the orientifold quotient, and study partial resolutions. 
    more » « less