Vortex-induced vibrations are oscillatory motions experienced by a body interacting with an external flow. These vibrations can be harnessed for energy harvesting purpose. A cantilever beam with a cylinder attached at the free end represents the bluff body oscillator of interest here. Vortex-induced vibrations of two adjacent bluff-body oscillators are studied by varying the transverse spacing between the oscillators. A finite element model of the system is used to numerically study the associated fluid–structure interactions. For the case with two oscillators, the effect of varying the oscillator spacing on the system response is studied. Dynamic mode decomposition is used for extracting coherent spatio-temporal structures in pressure fields. The system spectral response for the single oscillator and coupled oscillators cases are studied to examine the system dynamics. The obtained numerical results for the system dynamics are found to agree with previously reported experimental results in the literature. The present work can form a basis for constructing computational models of fluid coupled bluff-body oscillators and configuring arrays of bluff-body oscillators for energy harvesting.
more »
« less
Bluff Body, Piezoelastic Oscillator: Reduced-Order Model, Vortex-Induced Vibrations, and Energy Harvesting
Energy harvesting from flow-induced vibrations has gained substantial attention in the last two decades due to the rising demand for renewable and sustainable energy sources, as well as the widely availability of these sources, offering a viable alternative in areas where other ambient energy sources may not be readily accessible. Flow-induced vibrations of bluff bodies are characterized by complex nonlinear dynamics, for which accurate models are currently lacking. In this work, a circular cylinder attached to the free end of a piezoelastic cantilever is considered for energy harvesting. When placed in a flow, this system undergoes vortex-induced vibrations. A reduced-order model is developed to understand fluid-structure interactions of this system. A wake oscillator has been used to describe vortex-induced vibrations and a finite-element model has been used to model the piezoelastic cantilever. The developed model is used to explore the interplay amongst the fluid, structure, and piezoelectric element. The results obtained are compared to experimental data from literature, in terms of the vibration amplitude, vibration frequency, and power obtained. Modifications to the wake oscillator model are examined to better reflect the fluid-structure interactions. It is found that there is a trade-off between accurately predicting the vibration amplitude and accurately predicting the vibration frequency.
more »
« less
- Award ID(s):
- 2131594
- PAR ID:
- 10603969
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8843-8
- Subject(s) / Keyword(s):
- Vortex-induced vibrations energy harvesting reduced-order model, nonlinear oscillations
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vortex-induced vibration (VIV) has emerged as a promising method for small-scale energy harvesting. This research explores the key parameters affecting VIV in a cylinder-cantilever beam system within a Reynolds number range of 400–7500. The investigation focused on identifying the airflow velocity thresholds that initiate vibrations, measuring peak vibration amplitudes, and determining the critical airflow velocities where vibrations are maximized. By systematically varying mass, stiffness, and cylinder diameter, we examined their distinct effects on system behavior. Key outcomes indicate that larger cylinder diameters lead to increased vibration amplitudes and broader operational bandwidths, while adding mass reduces the bandwidth. Higher stiffness boosts both the maximum amplitude and bandwidth, shifting these to higher airflow velocities. The lock-in regime was observed to initiate at a Strouhal number (St) between 0.175 and 0.197, with vibration cessation occurring at an approximately consistent Strouhal number for each cylinder diameter. The peak vibration amplitude occurred at St ≈ 0.16, with fluctuations of less than 5% across all models. Additionally, the wake structure behind the cylinder and its behavior across the vibration bandwidth were analyzed using flow visualization techniques. A hot-wire anemometer positioned downstream measured velocity fluctuations from vortex shedding. These findings offer practical insights for optimizing VIV-based energy harvesting, linking wake behavior to amplitude response and power output. This study contributes to the broader understanding of VIV energy harvesters and provides a foundation for validating numerical models and enhancing the efficiency of sustainable energy systems.more » « less
-
Flow-induced vibrations of flexible surfaces driven by coherent vortical structures are ubiquitous in engineering and biological flows; from the extraction of fluidic energy via oscillating electro-active polymers to vocal fold dynamics during voiced speech production. These scenarios may involve either discrete or periodic loading conditions due to the advection of vortices past the structure. This work considers, as a function of the vortex production frequency, the fluid-structure interaction that occurs as vortices are propagated tangentially over flexible plates with variable structural properties. Velocity fields are acquired with particle image velocimetry and used to compute the vorticity and pressure fields, while the plate energy is estimated from its kinematics. Primary and secondary peaks in plate deflection amplitude and the plate energy as a function of vortex production frequency are observed at integer fractions of the fundamental plate frequency. At resonance conditions, plate energy relative to discrete vortex loading is increased by approximately three orders of magnitude, while the sub-harmonics increase the plate energy by about two orders of magnitude. Additional physical influences on the energy exchange process, including vortex-to-plate spacing and Strouhal number, are also investigated, detailing the importance of spatial and temporal interactions. The magnitude of the initial plate deflection as the vortex ring approaches the plate, due to persistent vibrations from previous interactions, is shown to retard the time at which the maximum load is applied as the increased relative vortex-to-plate spacing weakens cross-sign vorticity interactions. Finally, plate properties are scaled to model the structural properties of the vocal folds and the effect of intra-glottal vortices on vocal fold dynamics is quantified, where a negligible influence is observed.more » « less
-
We propose a new theory for fluid–structure interactions of cantilever microbeams undergoing small amplitude vibrations in viscous fluids. The method is based on the concept of nonlocal modal hydrodynamic functions that accurately capture three-dimensional (3D) fluid loading on the structure. For short beams for which 3D effects become prominent, existing local theories based on two-dimensional (2D) fluid approximations are inadequate to predict the dynamic response. We discuss and compare model predictions in terms of frequency response functions, modal shapes, quality factors, and added mass ratios with the predictions of the local theory, and we validate our new model with experimental results.more » « less
-
This research investigates the wake–foil interactions between two oscillating foils in a tandem configuration undergoing energy harvesting kinematics. Oscillating foils have been shown to extract hydrokinetic energy from free-stream flows through a combination of periodic heave and pitch motions, at relatively higher amplitudes and lower reduced frequency than thrust generating foils. When placed in tandem, the wake–foil interactions can govern the energy harvesting efficiency of the system due to a reduced relative flow velocity in combination with a structured and coherent wake of vortices shed from the high amplitude flapping of upstream foils. This work utilizes simulations of two tandem foils to parameterize and model the energy harvesting performance as a function of array configuration and foil kinematics. Once the wake of the leading foil has been fully parameterized, the placement, phase angle and kinematic stroke of the second foil is utilized to estimate the time-dependent power curve. The algorithm predicts the power of the second foil through the mean and unsteady wake characteristics, including the direct impingement of a vortex with the trailing foil.more » « less
An official website of the United States government

