skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 5, 2026

Title: Maestro: QoE-Aware Dynamic Resource Allocation in Wi-Fi Networks
Wi-Fi is an integral part of today's Internet infrastructure, enabling a diverse range of applications and services. Prior approaches to Wi-Fi resource allocation optimized Quality of Service (QoS) metrics, which often do not accurately reflect the user's Quality of Experience (QoE). To address the gap between QoS and QoE, we introduce Maestro, an adaptive method that formulates the Wi-Fi resource allocation problem as a partially observable Markov decision process (PO-MDP) to maximize the overall system QoE and QoE fairness. Maestro estimates QoE without using any application or client data; instead, it treats them as black boxes and leverages temporal dependencies in network telemetry data. Maestro dynamically adjusts policies to handle different classes of applications and variable network conditions. Additionally, Maestro uses a simulation environment for practical training. We evaluate Maestro in an enterprise-level Wi-Fi testbed with a variety of applications, and find that Maestro achieves up to 25× and 78% improvement in QoE and fairness, respectively, compared to the widely-deployed Wi-Fi Multimedia (WMM) policy. Compared to the state-of-the-art learning approach QFlow, Maestro increases QoE by up to 69%. Unlike QFlow which requires modifications to clients, we demonstrate that Maestro improves QoE of popular over-the-top services with unseen traffic without control over clients or servers.  more » « less
Award ID(s):
2212200
PAR ID:
10607921
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Networking
Volume:
3
Issue:
CoNEXT1
ISSN:
2834-5509
Page Range / eLocation ID:
1 to 24
Subject(s) / Keyword(s):
Wi-Fi QoE Access Category Priority Queue PO-MDP LSTM DDQN
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging multimedia applications often use a wireless LAN (Wi-Fi) infrastructure to stream content. These Wi-Fi deployments vary vastly in terms of their system configurations. In this paper, we take a step toward characterizing the Quality of Experience (QoE) of volumetric video streaming over an enterprise-grade Wi-Fi network to: (i) understand the impact of Wi-Fi control parameters on user QoE, (ii) analyze the relation between Quality of Service (QoS) metrics of Wi-Fi networks and application QoE, and (iii) compare the QoE of volumetric video streaming to traditional 2D video applications. We find that Wi-Fi configuration parameters such as channel width, radio interface, access category, and priority queues are important for optimizing Wi-Fi networks for streaming immersive videos. 
    more » « less
  2. Network quality-of-service (QoS) does not always translate to user quality-of-experience (QoE). Consequently, knowledge of user QoE is desirable in several scenarios that have traditionally operated on QoS information. Examples include traffic management by ISPs and resource allocation by the operating system. But today these systems lack ways to measure user QoE. To help address this problem, we propose offline generation of per-app models mapping app-independent QoS metrics to app-specific QoE metrics. This enables any entity that can observe an app's network traffic-including ISPs and access points-to infer the app's QoE. We describe how to generate such models for many diverse apps with significantly different QoE metrics. We generate models for common user interactions of 60 popular apps. We then demonstrate the utility of these models by implementing a QoE-aware traffic management framework and evaluate it on a WiFi access point. Our approach successfully improves QoE metrics that reflect user-perceived performance. First, we demonstrate that prioritizing traffic for latency-sensitive apps can improve responsiveness and video frame rate, by 46% and 115%, respectively. Second, we show that a novel QoE-aware bandwidth allocation scheme for bandwidth-intensive apps can improve average video bitrate for multiple users by up to 23%. 
    more » « less
  3. Accessing the Internet through Wi-Fi networks offers an inexpensive alternative for offloading data from mobile broadband connections. Businesses such as fast food restaurants, coffee shops, hotels, and airports, provide complimentary Internet access to their customers through Wi-Fi networks. Clients can connect to the Wi-Fi hotspot using different wireless devices. However, network administrators may apply traffic shaping to control the wireless client's upload and download data rates. Such limitation is used to avoid overloading the hotspot, thus providing fair bandwidth allocation. Also, it allows for the collection of money from the client in order to have access to a faster Internet service. In this paper, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple virtual wireless clients using only one physical wireless interface card. Each virtual wireless client emulates a standalone wireless device. The combination of the individual bandwidth of each virtual wireless client results in an increase of the total bandwidth gained by the attacker. Our proposed technique was implemented and evaluated in a real-life environment with an increase in data rate up to 16 folds. 
    more » « less
  4. With the increasing demand for wireless connectivity, ensuring the efficient coexistence of multiple radio access technologies in shared unlicensed spectrum has become an important issue. This paper focuses on optimizing Medium Access Control (MAC) parameters to enhance the coexistence of 5G New Radio in Unlicensed Spectrum (NR-U) and Wi-Fi networks operating in unlicensed spectrum with multiple priority classes of traffic that may have varying quality-of-service (QoS) requirements. In this context, we tackle the coexistence parameter management problem by introducing a QoS-aware State-Augmented Learnable (QaSAL) framework, designed to improve network performance under various traffic conditions. Our approach augments the state representation with constraint information, enabling dynamic policy adjustments to enforce QoS requirements effectively. Simulation results validate the effectiveness of QaSAL in managing NR-U and Wi-Fi coexistence, demonstrating improved channel access fairness while satisfying a latency constraint for high-priority traffic. 
    more » « less
  5. The dramatic growth in demand for mobile data service has prompted mobile network operators (MNOs) to explore new spectrum resources in unlicensed bands. MNOs have been recently allowed to extend LTE-based service called LTE-LAA over 5 GHz U-NII bands, currently occupied by Wi-Fi. To support applications with diverse QoS requirements, both LTE and Wi-Fi technologies introduce multiple priority classes with different channel contention parameters for accessing unlicensed bands. How these different priority classes affect the interplay between coexisting LTE and Wi-Fi technologies is still relatively under-explored. In this paper, we develop a simple and efficient framework that helps MNOs assess the fair coexistence between MNOs and Wi-Fi operators with prioritized channel access under the multi-channel setting. We derive an approximated closed-form solution for each MNO to pre-evaluate the probability of successful transmission (PST), average contention delay, and average throughput when adopting different priority classes to serve different traffics. MNOs and Wi-Fi operators can fit our model using measurements collected offline and/or online, and use it to further optimize their systems’ throughput and latency. Our results reveal that PSTs computed with our approximated closed-form model approach those collected from system-level simulations with around 95% accuracy under scenarios of dense network deployment density and high traffic intensity. 
    more » « less