skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Combining surface drifters and high resolution global simulations enables the mapping of internal tide surface energy
Abstract By dissipating energy and generating mixing, internal tides (ITs) are important for the climatological evolution of the ocean. Our understanding of this class of ocean variability is however hindered by the rarity of observations capable of capturing ITs with global coverage. The data provided by the Global Drifter Program (GDP) offer high temporal resolution and quasi-global coverage, thus bringing promising perspectives. However, due to their inherent drifting nature, these instruments provide a distorted view of the IT signal. By theoretically rationalizing this distortion and leveraging a massive synthetic drifter numerical simulation, we propose a global metric converting semi-diurnal IT energy levels from GDP data to levels comparable to Eulerian datasets (two numerical simulations, and a satellite altimetry IT atlas). We find that the simulation with a dedicated focus on IT representation is the one where the converted Lagrangian levels perform best. This supports renewed efforts in the concurrent numerical modeling of ITs/ocean circulation. The substantial deficit of energy in the IT atlas highlights the inability for altimetric estimates to measure incoherent and fine-scale ITs and strongly supports the need to isolate ITs signature in the data collected by the new wide-swath altimetry mission SWOT.  more » « less
Award ID(s):
1851164
PAR ID:
10607964
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Portfolio
Date Published:
Journal Name:
Scientific Reports
Volume:
15
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The surface kinetic energy of a 1/48° global ocean simulation and its distribution as a function of frequency and location are compared with the one estimated from 15,329 globally distributed surface drifter observations at hourly resolution. These distributions follow similar patterns with a dominant low‐frequency component and well‐defined tidal and near‐inertial peaks globally. Quantitative differences are identified with deficits of low‐frequency energy near the equator (factor 2) and at near‐inertial frequencies (factor 3) and an excess of energy at semidiurnal frequencies (factor 4) for the model. Owing to its hourly resolution and its near‐global spatial coverage, the array of surface drifters is an invaluable tool to evaluate the realism of tide‐resolving high‐resolution ocean simulations used in observing system simulation experiments. Sources of bias between model and drifter data are discussed, and associated leads for future work highlighted. 
    more » « less
  2. Abstract Internal waves generated by the interaction of the surface tides with topography are known to propagate long distances and lead to observable effects such as sea level variability, ocean currents, and mixing. In an effort to describe and predict these waves, the present work is concerned with using geographically distributed data from satellite altimeters and drifting buoys to estimate and map the baroclinic sea level associated with the M2, S2, N2, K1, and O1tides. A new mapping methodology is developed, based on a mixedL1/L2-norm optimization, and compared with previously developed methods for tidal estimation from altimeter data. The altimeter and drifter data are considered separately in their roles for estimating tides and for cross-validating estimates obtained with independent data. Estimates obtained from altimetry and drifter data are found to agree remarkably well in regions where the drifter trajectories are spatially dense; however, heterogeneity of the drifter trajectories is a disadvantage when they are considered alone for tidal estimation. When the different data types are combined by using geodetic mission altimetry to cross validate estimates obtained with either exact-repeat altimetry or drifter data, and subsequently averaging the latter estimates, the estimates significantly improve on the previously published HRET8.1 model, as measured by their utility for predicting sea level and surface currents in the open ocean. The methodology has been applied to estimate the annual modulations of M2, which are found to have much smaller amplitudes compared to those reported in HRET8.1, and suggest that the latter estimates of these tides were not reliable. Significance StatementThe mechanical and thermodynamic forcing of the ocean occurs primarily at very large scales associated with the gravitational perturbations of the sun and moon (tides), atmospheric wind stress, and solar insolation, but the frictional forces within the ocean act on very small scales. This research addresses the question of how the large-scale tidal forcing is transformed into the smaller-scale motion capable of being influenced by friction. The results show where internal waves are generated and how they transport energy across ocean basins to eventually be dissipated by friction. The results are useful to scientists interested in mapping the flows of mechanical energy in the ocean and predicting their influences on marine life, ocean temperature, and ocean currents. 
    more » « less
  3. Abstract Internal tides (ITs) play a critical role in ocean mixing, and have strong signatures in ocean observations. Here, global IT sea surface height (SSH) in nadir altimetry is compared with an ocean forecast model that assimilates de‐tided SSH from nadir altimetry. The forecast model removes IT SSH variance from nadir altimetry at skill levels comparable to those achieved with empirical analysis of nadir altimetry. Accurate removal of IT SSH is needed to fully reveal lower‐frequency mesoscale eddies and currents in altimeter data. Analysis windows of order 30–120 days, made possible by the frequent (hourly) outputs of the forecast model, remove more IT SSH variance than longer windows. Forecast models offer a promising new approach for global internal tide mapping and altimetry correction. Because they provide information on the full water column, forecast models can also help to improve understanding of the underlying dynamics of ITs. 
    more » « less
  4. Abstract. The pathways and fate of freshwater in the East Greenland Coastal Current (EGCC) are crucial to the climate system. The EGCC transports large amounts of freshwater in close proximity to sites of deep open-ocean convection in the Labrador and Irminger seas. Many studies have attempted to analyze this system from models and various observational platforms, but the modeling results largely disagree with one another, and observations are limited due to the harsh conditions typical of the region. Altimetry-derived surface currents, constructed from remote-sensing observations and applying geostrophic equations, provide a continuous observational data set beginning in 1993. However, these products have historically encountered difficulties in coastal regions, and thus their validity must be checked. In this work, we use a comprehensive methodology to compare these Eulerian data to a Lagrangian data set of 34 surface drifter trajectories and demonstrate that the altimetry-derived surface currents are surprisingly capable of recovering the spatial structure of the flow field on the south Greenland shelf and can mimic the Lagrangian nature of the flow as observed from surface drifters. 
    more » « less
  5. Previous satellite estimates of internal tides are usually based on 25 years of sea surface height (SSH) data from 1993 to 2017 measured by exact-repeat (ER) altimetry missions. In this study, new satellite estimates of internal tides are based on 8 years of SSH data from 2011 to 2018 measured mainly by nonrepeat (NR) altimetry missions. The two datasets are labeled ER25yr and NR8yr, respectively. NR8yr has advantages over ER25yr in observing internal tides because of its shorter time coverage and denser ground tracks. Mode-1 M2internal tides are mapped from both datasets following the same procedure that consists of two rounds of plane wave analysis with a spatial bandpass filter in between. The denser ground tracks of NR8yr make it possible to examine the impact of window size in the first-round plane wave analysis. Internal tides mapped using six different windows ranging from 40 to 160 km have almost the same results on global average, but smaller windows can better resolve isolated generation sources. The impact of time coverage is studied by comparing NR8yr160km and ER25yr160km, which are mapped using 160-km windows in the first-round plane wave analysis. They are evaluated using independent satellite altimetry data in 2020. NR8yr160km has larger model variance and can cause larger variance reduction, suggesting that NR8yr160km is a better model than ER25yr160km. Their global energies are 43.6 and 33.6 PJ, respectively, with a difference of 10 PJ. Their energy difference is a function of location. Significance StatementOur understanding of internal tides is mainly limited by the scarcity of field measurements with sufficient spatiotemporal resolution. Satellite altimetry offers a unique technique for observing and predicting internal tides on a global scale. Previous satellite observations of internal tides are mainly based on 25 years of data from exact-repeat altimetry missions. This paper demonstrates that internal tides can be mapped using 8 years of data made by nonrepeat altimetry missions. The new dataset has shorter time coverage and denser ground tracks; therefore, one can examine the impact of window size and time coverage on mapping internal tides from satellite altimetry. A comparison of models mapped from the two datasets sheds new light on the spatiotemporal variability of internal tides. 
    more » « less