A new reference state for density functional theory (DFT), termed the independent atom ansatz, is introduced in this work. This ansatz allows for the formally exact representation of electron density in terms of atom-localized orbitals. Self-consistent equations for such states are derived in general and asymptotic forms. The resultant total energy functional is found to closely resemble tight-binding theory. The independent atom ansatz facilitates partial cancellation of inter-atomic electron–electron and nucleus–electron interactions, which allows for the derivation of analytical tight-binding Hamiltonian matrix elements in a weak interaction limit. The formalism provides energy decomposition and charge analyses at no additional cost and links tight-binding, localized orbital, and electronegativity concepts. Numerical accuracy of the total energy functional has been previously reported for hydrogenic systems [Mironenko, J. Phys. Chem. A 127, 7836 (2023)] and is demonstrated here for He2, Li2, Be2, B2, N2, O2, F2, and Ne2. The method accurately reproduces the shapes of potential energy curves, capturing large-basis CCSD(T)-level bond lengths and bond dissociation energies for N2, O2, and F2 using only a minimal basis set. It outperforms both CCSD(T) and some mainstream approximate restricted Kohn–Sham DFT functionals in describing bond dissociation behavior away from equilibrium geometries.
more »
« less
This content will become publicly available on January 1, 2026
Out-of-equilibrium eigenstate thermalization hypothesis
Understanding how out-of-equilibrium states thermalize under quantum unitary dynamics is an important problem in many-body physics. In this work, we propose a statistical Ansatz for the matrix elements of non-equilibrium initial states in the energy eigenbasis, in order to describe such evolution. The approach is inspired by the Eigenstate Thermalisation Hypothesis (ETH) but the proposed Ansatz exhibits different scaling. Importantly, we point out the exponentially small cross-correlations between the observable and the initial state matrix elements that determine relaxation dynamics toward equilibrium. We numerically verify scaling and cross-correlation, point out the emergent universality of the high-frequency behavior, and outline possible generalizations.
more »
« less
- Award ID(s):
- 2310426
- PAR ID:
- 10608116
- Publisher / Repository:
- SciPost Foundation
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 18
- Issue:
- 4
- ISSN:
- 2542-4653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Variational Quantum Algorithms (VQAs) rely upon the iterative optimization of a parameterized unitary circuit with respect to an objective function. Since quantum machines are noisy and expensive resources, it is imperative to choose a VQA's ansatz appropriately and its initial parameters to be close to optimal. This work tackles the problem of finding initial ansatz parameters by proposing CAFQA, a Clifford ansatz for quantum accuracy. The CAFQA ansatz is a hardware-efficient circuit built with only Clifford gates. In this ansatz, the initial parameters for the tunable gates are chosen by searching efficiently through the Clifford parameter space via classical simulation, thereby producing a suitable stabilizer state. The stabilizer states produced are shown to always equal or outperform traditional classical initialization (e.g., Hartree-Fock), and often produce high accuracy estimations prior to quantum exploration. Furthermore, the technique is classically suited since a) Clifford circuits can be exactly simulated classically in polynomial time and b) the discrete Clifford space, while scaling exponentially in the number of qubits, is searched efficiently via Bayesian Optimization. For the Variational Quantum Eigensolver (VQE) task of molecular ground state energy estimation up to 20 qubits, CAFQA's Clifford Ansatz achieves a mean accuracy of near 99%, recovering as much as 99.99% of the correlation energy over Hartree-Fock. Notably, the scalability of the approach allows for preliminary ground state energy estimation of the challenging Chromium dimer with an accuracy greater than Hartree-Fock. With CAFQA's initialization, VQA convergence is accelerated by a factor of 2.5x. In all, this work shows that stabilizer states are an accurate ansatz initialization for VQAs. Furthermore, it highlights the potential for quantum-inspired classical techniques to support VQAs.more » « less
-
Quantum many-body scar states are highly excited eigenstates of many-body systems that exhibit atypical entanglement and correlation properties relative to typical eigenstates at the same energy density. Scar states also give rise to infinitely long-lived coherent dynamics when the system is prepared in a special initial state having finite overlap with them. Many models with exact scar states have been constructed, but the fate of scarred eigenstates and dynamics when these models are perturbed is difficult to study with classical computational techniques. In this work, we propose state preparation protocols that enable the use of quantum computers to study this question. We present protocols both for individual scar states in a particular model, as well as superpositions of them that give rise to coherent dynamics. For superpositions of scar states, we present both a system-size-linear depth unitary and a finite-depth nonunitary state preparation protocol, the latter of which uses measurement and postselection to reduce the circuit depth. For individual scarred eigenstates, we formulate an exact state preparation approach based on matrix product states that yields quasipolynomial-depth circuits, as well as a variational approach with a polynomial-depth ansatz circuit. We also provide proof of principle state-preparation demonstrations on superconducting quantum hardware.more » « less
-
null (Ed.)Partial and total photoionization cross sections of iron-peak elements are important for the determination of abundances in late-type stars and nebular objects. We have investigated photoionization of neutral chromium from the ground and excited states in the low energy region from the first ionization threshold at 6.77 eV to 30 eV. Accurate descriptions of the initial bound states of Cr I and the final residual Cr II ionic states have been obtained in the multiconfiguration Hartree-Fock method together with adjustable configuration expansions and term-dependent non-orthogonal orbitals. The B-spline R-matrix method has been used for the calculation of photoionization cross sections. The 194 LS final ionic states of Cr II 3d44s, 3d34s2, 3d5, 3d44p, and 3d34s4p principal configurations have been included in the close-coupling expansion. The inclusion of all terms of these configurations has significant impact on the near-threshold resonance structures as well as on the nonresonant background cross sections. Total photoionization cross sections from the ground 3d54sa7S and excited 3d54sa5S, 3d44s2a5D, 3d54pz5P, and 3d44s4py5P states of Cr I have been compared with other available R-matrix calculation to estimate the likely uncertainties in photoionization cross sections. We analyzed the partial photoionization cross sections for leaving the residual ion in various states to identify the important scattering channels, and noted that 3d electron ionization channel becomes dominant at higher energies.more » « less
-
David, G.; Garg, P.; Kalweit, A.; Mukherjee, S.; Ullrich, T.; Xu, Z.; Yoo, I.-K. (Ed.)The Beam Energy Scan program at the Relativistic Heavy Ion Collider (RHIC) is searching for the QCD critical point. The main signal for the critical point is the kurtosis of the distribution of proton yields obtained on an event by event basis where one expects a peak at the critical point. However, its exact behavior is still an open question due to out-of-equilibrium effects and uncertainty in the equation of state. Here we use a simplistic hydrodynamic model that enforces strangeness-neutrality, selecting trajectories that pass close to the critical point. We vary the initial conditions to estimate the effect of out-of-equilibrium hydrodynamics on the kurtosis signal.more » « less
An official website of the United States government
