Dielectric capacitors can store and release electric energy at ultrafast rates and are extensively studied for applications in electronics and electric power systems. Among various candidates, thin films based on relaxor ferroelectrics, a special kind of ferroelectric with nanometer-sized domains, have attracted special attention because of their high energy densities and efficiencies. We show that high-energy ion bombardment improves the energy storage performance of relaxor ferroelectric thin films. Intrinsic point defects created by ion bombardment reduce leakage, delay low-field polarization saturation, enhance high-field polarizability, and improve breakdown strength. We demonstrate energy storage densities as high as ~133 joules per cubic centimeter with efficiencies exceeding 75%. Deterministic control of defects by means of postsynthesis processing methods such as ion bombardment can be used to overcome the trade-off between high polarizability and breakdown strength. 
                        more » 
                        « less   
                    
                            
                            Lead-free bismuth pyrochlore-based dielectric films for ultrahigh energy storage capacitors
                        
                    
    
            We developed ultra-high energy storage density capacitors using a new class of lead-free bismuth pyrochlorebased dielectric film material systems with high breakdown strength and reliability. The 2 μm-thick pyrochlore ceramic film capacitors have demonstrated ultra-high energy densities around 90 J/cm3 with very low energy loss below 3%, which is achieved by the combination of high permittivity, pseudo-linear dielectric characteristics, and high breakdown electric field over 4.5 MV/cm. Particularly, these pyrochlore ceramic films can endure voltage strength up to ~900 V. These noteworthy pyrochlore ceramic films are fabricated by the lowcost chemical solution deposition process which allows dielectric films to be processed on standard platinized silicon wafers. This new class of capacitors can satisfy the emergent needs for significant reduction in size and weight of capacitors with high energy storage capability in power electronics, electric vehicles, and energy storage in sustainable energy systems. Our research provides a unique and economical platform for the processing of this useful pyrochlore material in large volume for eco-friendly energy applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2044631
- PAR ID:
- 10608157
- Publisher / Repository:
- Elsevier Ltd
- Date Published:
- Journal Name:
- Materials Today Physics
- Volume:
- 33
- Issue:
- C
- ISSN:
- 2542-5293
- Page Range / eLocation ID:
- 101054
- Subject(s) / Keyword(s):
- Lead-free Pyrochlore dielectrics Film capacitor Pseudo-linearity Chemical solution deposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High energy density, high temperature, and low loss polymer dielectrics are highly desirable for electric energy storage, e.g., film capacitors in the power electronics of electric vehicles and high-speed trains. Fundamentally, high polarization and low dielectric loss are two conflicting physical properties, because more polarization processes will involve more loss mechanisms. As such, we can only achieve a delicate balance between high dielectric constant and reasonably low loss. This review focuses on achieving low dielectric loss while trying to enhance dielectric constants for dielectric polymers, which can be divided into two categories: extrinsic and intrinsic. For extrinsic dielectric systems, the working mechanisms include dipolar (e.g., nanodielectrics) and space charge (e.g., ion gels) interfacial polarizations. These polarizations do not increase the intrinsic dielectric constants, but cause decreased breakdown strength and increased dielectric loss for polymers. For intrinsic dielectric polymers, the dielectric constant originates from electronic, atomic (or vibrational), and orientational polarizations, which are intrinsic to the polymers themselves. Because of the nature of molecular bonding for organic polymers, the dielectric constant from electronic and atomic polarizations is limited to 2-5 for hydrocarbon-based insulators (i.e., band gap > 4 eV). It is possible to use orientational polarization to enhance intrinsic dielectric constant while keeping reasonably low loss. However, nonlinear ferroelectric switching in ferroelectric polymers must be avoided. Meanwhile, paraelectric polymers often exhibit high electronic conduction due to large chain motion in the paraelectric phase. In this sense, dipolar glass polymers are more attractive for low loss dielectrics, because frozen chain dynamics enables deep traps to prevent electronic conduction. Both side-chain and main-chain dipolar glass polymers are promising candidates. Furthermore, it is possible to combine intrinsic and extrinsic dielectric properties synergistically in multilayer films to enhance breakdown strength and further reduce dielectric loss for high dielectric constant polar polymers. At last, future research directions are briefly discussed for the ultimate realization of next generation polymer film capacitors.more » « less
- 
            In response to the stringent requirements for future DC-link capacitors in electric vehicles (EVs), it is desirable to develop dielectric polymer films with high-temperature tolerance (at least 105 °C) and low loss (dissipation factor, tan δ < 0.003). Although the biaxially oriented poly(ethylene terephthalate) (BOPET) film has an alleged temperature rating of 120 °C, its dielectric performance in terms of breakdown strength and lifetime cannot satisfy the stringent requirements for power electronics in EVs. In this work, we carried out a structure–electrical insulation property relationship study to understand the working mechanism for various PET films, including a commercial BOPET film, an amorphous PET (AmPET) film, and two annealed PET films (AnPET, i.e., cold-crystallized from AmPET). Structural analyses revealed a uniform edge-on crystalline orientation in BOPET with the a* axis in the film normal direction. Meanwhile, a high content of the rigid amorphous fraction (RAF) was identified for BOPET, which resulted from biaxial stretching during processing. On the contrary, AnPET films had a random crystal orientation with lower RAF contents. From dielectric breakdown and lifetime studies, the high-crystallinity AnPET film exhibited better electrical insulation than BOPET, and AmPET had the worst electrical insulation. Electrical conductivity results revealed that the high RAF content in BOPET led to reasonably high breakdown strength and long lifetime only at low temperatures (<100 °C). Meanwhile, PET crystals were more insulating than the amorphous phase, whether mobile, rigid, or glassy. In particular, the flat-on lamellae in the AnPET film were more effective than the edge-on lamellae in BOPET in blocking the conduction of charge carriers (electrons and impurity ions). This understanding will help us design high-temperature semicrystalline polymer films for DC-link capacitors in EVs.more » « less
- 
            null (Ed.)The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.more » « less
- 
            Antiferroelectric (Pb0.87Sr0.05Ba0.05La0.02)(Zr0.52Sn0.40Ti0.08)O3 thin film capacitors were fabricated for dielectric energy storage. Thin films with excellent crystal quality (FWHM 0.021°) were prepared on (100) SrRuO3/SrTiO3 substrates by pulsed laser deposition. The out-of-plane lattice constant of the thin film was 4.110 ± 0.001 Å. An average maximum recoverable energy storage density, 88 ± 17 J cm−3 with an efficiency of 85% ± 6% at 1 kHz and 80 ± 15 J cm−3 with an efficiency of 91% ± 4% at 10 kHz, was achieved at room temperature. The capacitor was fatigue resistant up to 106 cycles at an applied electric field of 2 MV cm−1. These properties are linked to a low level of hysteresis and slow polarization saturation. PbZrO3-derived oxide thin film capacitors are promising for high efficiency and low loss dielectric energy storage applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    