Abstract Rapid decarbonization of the cement industry is critical to meeting climate goals. Oversimplification of direct air capture benefits from hydrated cement carbonation has skewed the ability to derive decarbonization solutions. Here, we present both global cement carbonation magnitude and its dynamic effect on cumulative radiative forcing. From 1930–2015, models suggest approximately 13.8 billion metric tons (Gt) of CO2was re-absorbed globally. However, we show that the slow rate of carbonation leads to a climate effect that is approximately 60% smaller than these apparent benefits. Further, we show that on a per kilogram (kg) basis, demolition emissions from crushing concrete at end-of-life could roughly equal the magnitude of carbon-uptake during the demolition phase. We investigate the sensitivity of common decarbonization strategies, such as utilizing supplementary cementitious materials, on the carbonation process and highlight the importance of the timing of emissions release and uptake on influencing cumulative radiative forcing. Given the urgency of determining effective pathways for decarbonizing cement, this work provides a reference for overcoming some flawed interpretations of the benefits of carbonation.
more »
« less
Cement and Alternatives in the Anthropocene
Globally, the production of concrete is responsible for 5% to 8% of anthropogenic CO2 emissions. Cement, a primary ingredient in concrete, forms a glue that holds concrete together when combined with water. Cement embodies approximately 90% of the greenhouse gas emissions associated with concrete production, and decarbonization methods focus primarily on cement production. But mitigation strategies can accrue throughout the concrete life cycle. Decarbonization strategies in cement manufacture, use, and disposal can be rapidly implemented to address the global challenge of equitably meeting societal needs and climate goals. This review describes (a) the development of our reliance on cement and concrete and the consequent environmental impacts, (b) pathways to decarbonization throughout the concrete value chain, and (c) alternative resources that can be leveraged to further reduce emissions while meeting global demands. We close by highlighting a research agenda to mitigate the climate damages from our continued dependence on cement.
more »
« less
- Award ID(s):
- 2143981
- PAR ID:
- 10608163
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Environment and Resources
- Volume:
- 49
- Issue:
- 1
- ISSN:
- 1543-5938
- Page Range / eLocation ID:
- 309 to 335
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Methane pyrolysis is an emerging technology to produce lower-carbon intensity hydrogen at scale, as long as the co-produced solid carbon is permanently captured. Partially replacing Portland cement with pyrolytic carbon would allow the sequestration at a scale that matches the needs of the H 2 industry. Our results suggest that compressive strength, the most critical mechanical property, of blended cement could even be improved while the cement manufacture, which contributes to ~ 9% global anthropogenic CO 2 emissions, can be decarbonized. A CO 2 abatement up to 10% of cement production could be achieved with the inclusion of selected carbon morphologies, without the need of significant capital investment and radical modification of current production processes. The use of solid carbon could have a higher CO 2 abatement potential than the incorporation of conventional industrial wastes used in concrete at the same replacement level. With this approach, the concrete industry could become an enabler for manufacturing a lower-carbon intensity hydrogen in a win–win solution. Impact Methane pyrolysis is an up-scalable technology that produces hydrogen as a lower carbon-intensity energy carrier and industrial feedstock. This technology can attract more investment for lower-carbon intensity hydrogen if co-produced solid carbon (potentially hundreds of million tons per year) has value-added applications. The solid carbon can be permanently stored in concrete, the second most used commodity worldwide. To understand the feasibility of this carbon storage strategy, up to 10 wt% of Portland cement is replaced with disk-like or fibrillar carbon in our study. The incorporation of 5% and 10% fibrillar carbons increase the compressive strength of the cement-based materials by at least 20% and 16%, respectively, while disk-like carbons have little beneficial effects on the compressive strength. Our life-cycle assessment in climate change category results suggest that the 10% cement replacement with the solid carbon can lower ~10% of greenhouse gas emissions of cement production, which is currently the second-largest industrial emitter in the world. The use of solid carbon in concrete can supplement the enormous demand for cement substitute for low-carbon concrete and lower the cost of the low-carbon hydrogen production. This massively available low-cost solid carbon would create numerous new opportunities in concrete research and the industrial applications.more » « less
-
Abstract Growing urban populations and deteriorating infrastructure are driving unprecedented demands for concrete, a material for which there is no alternative that can meet its functional capacity. The production of concrete, more particularly the hydraulic cement that glues the material together, is one of the world’s largest sources of greenhouse gas (GHG) emissions. While this is a well-studied source of emissions, the consequences of efficient structural design decisions on mitigating these emissions are not yet well known. Here, we show that a combination of manufacturing and engineering decisions have the potential to reduce over 76% of the GHG emissions from cement and concrete production, equivalent to 3.6 Gt CO2-eq lower emissions in 2100. The studied methods similarly result in more efficient utilization of resources by lowering cement demand by up to 65%, leading to an expected reduction in all other environmental burdens. These findings show that the flexibility within current concrete design approaches can contribute to climate mitigation without requiring heavy capital investment in alternative manufacturing methods or alternative materials.more » « less
-
Abstract Global climate goals require a transition to a deeply decarbonized energy system. Meeting the objectives of the Paris Agreement through countries' nationally determined contributions and long‐term strategies represents a complex problem with consequences across multiple systems shrouded by deep uncertainty. Robust, large‐ensemble methods and analyses mapping a wide range of possible future states of the world are needed to help policymakers design effective strategies to meet emissions reduction goals. This study contributes a scenario discovery analysis applied to a large ensemble of 5,760 model realizations generated using the Global Change Analysis Model. Eleven energy‐related uncertainties are systematically varied, representing national mitigation pledges, institutional factors, and techno‐economic parameters, among others. The resulting ensemble maps how uncertainties impact common energy system metrics used to characterize national and global pathways toward deep decarbonization. Results show globally consistent but regionally variable energy transitions as measured by multiple metrics, including electricity costs and stranded assets. Larger economies and developing regions experience more severe economic outcomes across a broad sampling of uncertainty. The scale of CO2removal globally determines how much the energy system can continue to emit, but the relative role of different CO2removal options in meeting decarbonization goals varies across regions. Previous studies characterizing uncertainty have typically focused on a few scenarios, and other large‐ensemble work has not (to our knowledge) combined this framework with national emissions pledges or institutional factors. Our results underscore the value of large‐ensemble scenario discovery for decision support as countries begin to design strategies to meet their goals.more » « less
-
Construction materials generate nearly one-third of global carbon emissions, yet conventional accounting captures only a fraction of this impact. Using EXIOBASE data spanning 25 years, we tracked emissions across construction supply chains for cement, steel, metals, and plastics. While global construction demand nearly tripled, regional patterns diverged significantly. The EU reduced emissions despite increased demand through renewable energy adoption and emissions trading, while China’s construction boom—driving most global growth—significantly increased domestic emissions. Manufacturing contributes most to embodied emissions compared to resource extraction and waste treatment. Increased reliance on offshore production undermines domestic emission control strategies, highlighting the need for expanded carbon border adjustment mechanisms. Without policies addressing full supply chain emissions, even aggressive climate initiatives will be compromised by carbon leakage, creating an emissions trajectory incompatible with global climate targets.more » « less
An official website of the United States government

