skip to main content


Title: Sequestration of solid carbon in concrete: A large-scale enabler of lower-carbon intensity hydrogen from natural gas
Abstract Methane pyrolysis is an emerging technology to produce lower-carbon intensity hydrogen at scale, as long as the co-produced solid carbon is permanently captured. Partially replacing Portland cement with pyrolytic carbon would allow the sequestration at a scale that matches the needs of the H 2 industry. Our results suggest that compressive strength, the most critical mechanical property, of blended cement could even be improved while the cement manufacture, which contributes to ~ 9% global anthropogenic CO 2 emissions, can be decarbonized. A CO 2 abatement up to 10% of cement production could be achieved with the inclusion of selected carbon morphologies, without the need of significant capital investment and radical modification of current production processes. The use of solid carbon could have a higher CO 2 abatement potential than the incorporation of conventional industrial wastes used in concrete at the same replacement level. With this approach, the concrete industry could become an enabler for manufacturing a lower-carbon intensity hydrogen in a win–win solution. Impact Methane pyrolysis is an up-scalable technology that produces hydrogen as a lower carbon-intensity energy carrier and industrial feedstock. This technology can attract more investment for lower-carbon intensity hydrogen if co-produced solid carbon (potentially hundreds of million tons per year) has value-added applications. The solid carbon can be permanently stored in concrete, the second most used commodity worldwide. To understand the feasibility of this carbon storage strategy, up to 10 wt% of Portland cement is replaced with disk-like or fibrillar carbon in our study. The incorporation of 5% and 10% fibrillar carbons increase the compressive strength of the cement-based materials by at least 20% and 16%, respectively, while disk-like carbons have little beneficial effects on the compressive strength. Our life-cycle assessment in climate change category results suggest that the 10% cement replacement with the solid carbon can lower ~10% of greenhouse gas emissions of cement production, which is currently the second-largest industrial emitter in the world. The use of solid carbon in concrete can supplement the enormous demand for cement substitute for low-carbon concrete and lower the cost of the low-carbon hydrogen production. This massively available low-cost solid carbon would create numerous new opportunities in concrete research and the industrial applications.  more » « less
Award ID(s):
1935604
NSF-PAR ID:
10362754
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
MRS Bulletin
Volume:
46
Issue:
8
ISSN:
0883-7694
Page Range / eLocation ID:
680 to 686
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Amziane, S ; Merta, I ; Page, J. (Ed.)
    Portland cement is one of the most used materials on earth. Its annual production is responsible for approximately 7% of global carbon dioxide (CO2) emissions. These emissions are primarily associated with (1) the burning of fossil fuels to heat cement kilns and (2) the release of CO2 during limestone calcination. One proposed strategy for CO2 reduction includes the use of functional limestone fillers, which reduce the amount of portland cement in concrete without compromising strength. This study investigated the effect of using renewable, CO2-storing, biogenic CaCO3 produced by E. huxleyi as limestone filler in portland limestone cements (PLCs). Biogenic CaCO3 was used to synthesize PLCs with 0, 5, 15, and 35% limestone replacement of portland cement. The results substantiate that the particle sizes of the biogenic CaCO3 were significantly smaller and the surface areas significantly larger than that of reagent grade CaCO3. X-ray diffraction indicated no differences in mineralogy between reagent-grade and biogenic CaCO3. The use of biogenic CaCO3 as a limestone filler led to (i) increased water demand at the higher replacements, which was countered by using a superplasticizer, and (ii) enhanced nucleation during cement hydration, as measured by isothermal conduction calorimetry. The 7-day compressive strengths of the PLC pastes were measured using mechanical testing. Enhanced nucleation effects were observed for PLC samples containing biogenic CaCO3. 7-day compressive strength of the PLCs produced using biogenic CaCO3 were also enhanced compared to PLCs produced using reagent-grade CaCO3 due to the nucleation effect. This study illustrates an opportunity for using CO2-storing, biogenic CaCO3 to enhance mechanical properties and CO2 storage in PLCs containing biologically architected CaCO3. 
    more » « less
  2. Abstract

    Low cost and high durability have made Portland cement the most widely‐used building material, but benefits are offset by environmental harm of cement production contributing 8–10% of total anthropogenic CO2gas emissions. High sulfur‐content materials (HSMs) are an alternative that can perform the binding roles as cements with a smaller carbon footprint, and possibly superior chemical, physical, and mechanical properties. Inverse vulcanization of 90 wt% sulfur with 10 wt% canola oil or sunflower oil to yield CanS or SunS, respectively. Notably, these HSMs prepared at temperatures ≤180 °C compared to >1200 °C hours for Portland cement CanS was combined with 5 wt% fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK) to give composites CanS‐FA, CanS‐SF, CanS‐GGBFS, and CanS‐MK, respectively. The analogous protocol with SunS likewise yielded SunS‐FA, SunS‐SF, SunS‐GGBFS, and SunS‐MK. Each of these HSMs exhibit high compressive mechanical strength, low water uptake values, and exceptional resistance to acid‐induced corrosion. All of the composites also exhibit superior compressive strength retention after exposure to acidic solutions, conditions under which Portland cement undergoes dissolution. The polymer cement‐pozzolan composites reported herein may thus serve as greener alternatives to traditional Portland cement in some applications.

     
    more » « less
  3. Abstract

    Setting and strength development of ordinary Portland cement (OPC) binders involves multiple interacting chemical reactions, resulting in the formation of a solid microstructure. A long‐standing yet elusive goal has been to establish a basis for the prediction of the properties and performance of concrete using knowledge of the chemical and physical attributes of its components—PC, sand, stone, water, and chemical admixtures—together with the environmental conditions under which they react. Machine learning (ML) provides adata‐drivenbasis for the estimation of properties, and has recently been applied to estimate the 28 days (compressive) strength of concrete from knowledge of its mixture proportions (Young et al,Cem Concr Res, 2019,115:379). Building on this success, the current work uses a diverse dataset of ASTM C150 cements, the chemical composition and other attributes of which have been measured. ML estimators were trained with this dataset to estimate both paste setting time and mortar strength development. The ML estimation errors are typically similar to the measurement repeatability of the relevant ASTM test methods, and are thus able to account for the influence of binder composition and fineness. This creates new opportunities to apply data intensive methods to optimize concrete formulations under multiple constraints of cost, CO2impact, and performance attributes.

     
    more » « less
  4. This study characterized and evaluated the use of reclaimed fly ash (RFA) and reclaimed ground bottom ash (GBA) as alternative sources of supplementary cementitious materials (SCMs) for the production of concrete mixtures. Conventional Class F fly ash (FA) was also evaluated for comparison. The effects of SCM content on fresh and hardened properties of concrete were investigated by replacing 10%, 20%, and 30% of cement by mass. Characterization results showed that all three ashes met ASTM C618 chemical requirements (i.e., sum of SiO 2  + Al 2 O 3  + Fe 2 O 3 , CaO, SO 3 , moisture content, and loss of ignition) and 7- and 28-days strength activity index (SAI) requirements for Class F FA. In addition, RFA exhibited slightly higher SAI at 28 days of curing, followed by GBA and FA. In relation to fresh concrete properties, FA increased the concrete slump compared with the control mixture, whereas RFA and GBA decreased the concrete slump. However, GBA produced more significant slump decrements than RFA, which was attributed to the irregular angular particles of GBA. Generally, all the coal ashes produced decrements in air content compared with the control mixture. Comparatively, among the three ashes, GBA exhibited the highest 28- and 90-days compressive strength and surface resistivity (SR) at all cement replacement levels. Furthermore, at 90 days of curing, RFA and GBA concrete mixtures outperformed the FA concrete mixtures in relation to compressive strength and SR. Consequently, both RFA and GBA are promising SCMs for concrete materials. 
    more » « less
  5. Abstract Abstract

    Options for recycling fiber composite polymer (FCP) materials are scarce, as these materials cannot be normally recycled and are toxic when improperly disposed. Additionally, reducing water usage is an increasing concern, as the concrete industry currently uses 10% of the world’s industrial water. Therefore, building upon our previous work, this research explores the use of polymer hybrid carbon and glass composite waste products as reinforcements in high-pressure compacted cement. Our material used nearly 70% less water during manufacturing and exhibited improved durability and salt corrosion resistance. Compression strength tests were performed on high-pressure compacted materials containing 6.0 wt% recycled admixtures before and after saltwater aging, and the results showed that the material retained 90% of its original compression strength after aging, as it contained fewer pores and cavities. Our experimental work was supplemented by molecular dynamics. Simulations, which indicated that the synergetic effects of compaction and FCP admixture addition slowed the diffusion of corrosive salt ions by an average of 84%. Thus, our high-pressure compacted cement material may be suitable for extended use in marine environments, while also reducing the amount of commercial fiber composite polymer waste material that is sent to the landfill.

    <bold>Article Highlights</bold>

    Fiber composite waste was successfully recycled into denser, high-pressure compacted ordinary Portland cement materials.

    High-pressure compacted cement samples containing 6% recycled admixtures retained 90% of their compression strength after salt aging.

    The high-pressure compaction method utilized 70% less water during specimen fabrication.

     
    more » « less