skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Radiation Damage Mitigation in FeCrAl Alloy at Sub-Recrystallization Temperatures
Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr2+ ions at a dose of 1014 cm−2 were annealed using EWF at 250 °C for 60 s. We demonstrate a remarkable transformation in the irradiated microstructure, where significant increases in kernel average misorientation (KAM) and low-angle grain boundaries (LAGBs) typically indicate heightened defect density; the use of EWF annealing reversed these effects. X-ray diffraction (XRD) confirmed these findings, showing substantial reductions in full width at half maximum (FWHM) values and a realignment of peak positions toward their original states, indicative of stress and defect recovery. To compare the effectiveness of EWF, we also conducted traditional thermal annealing at 250 °C for 7 h, which proved less effective in defect recovery as evidenced by less pronounced improvements in XRD FWHM values.  more » « less
Award ID(s):
2103928
PAR ID:
10608346
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Materials
Volume:
18
Issue:
1
ISSN:
1996-1944
Page Range / eLocation ID:
124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Thermal annealing is a widely used strategy to enhance semiconductor device performance. However, the process is complex for multi-material multi-layered semiconductor devices, where thermoelastic stresses from lattice constant and thermal expansion coefficient mismatch may create more defects than those annealed. We propose an alternate low temperature annealing technique, which utilizes the electron wind force (EWF) induced by small duty cycle high density pulsed current. To demonstrate its effectiveness, we intentionally degrade AlGaN/GaN high electron mobility transistors (HEMTs) with accelerated OFF-state stressing to increase ON-resistance ∼182.08% and reduce drain saturation current ∼85.82% of pristine condition at a gate voltage of 0 V. We then performed the EWF annealing to recover the corresponding values back to ∼122.21% and ∼93.10%, respectively. The peak transconductance, degraded to ∼76.58% of pristine at the drain voltage of 3 V, was also recovered back to ∼92.38%. This recovery of previously degraded transport properties is attributed to approximately 80% recovery of carrier mobility, which occurs during EWF annealing. We performed synchrotron differential aperture x-ray microscopy measurements to correlate these annealing effects with the lattice structural changes. We found a reduction of lattice plane spacing of (001) planes and stress within the GaN layer under the gate region after EWF annealing, suggesting a corresponding decrease in defect density. Application of this low-temperature annealing technique for in-operando recovery of degraded electronic devices is discussed. 
    more » « less
  2. Low-angle grain boundaries (LAGBs) accommodate residual stress through the rearrangement and accumulation of dislocations during cold rolling. This study presents an electron wind force-based annealing approach to recover cold-rolling induced residual stress in FeCrAl alloy below 100 °C in 1 min. This is significantly lower than conventional thermal annealing, which typically requires temperatures around 750 °C for about 1.5 h. A key feature of our approach is the athermal electron wind force effect, which promotes dislocation movement and stress relief at significantly lower temperatures. The electron backscattered diffraction (EBSD) analysis reveals that the concentration of low-angle grain boundaries (LAGBs) is reduced from 82.4% in the cold-rolled state to a mere 47.5% following electropulsing. This level of defect recovery even surpasses the pristine material’s initial state, which exhibited 54.8% LAGBs. This reduction in LAGB concentration was complemented by kernel average misorientation (KAM) maps and X-ray diffraction (XRD) Full Width at Half Maximum (FWHM) measurements, which further validated the microstructural enhancements. Nanoindentation tests revealed a slight increase in hardness despite the reduction in dislocation density, suggesting a balance between grain boundary refinement and dislocation dynamics. This proposed low-temperature technique, driven by athermal electron wind forces, presents a promising avenue for residual stress mitigation while minimizing undesirable thermal effects, paving the way for advancements in various material processing applications. 
    more » « less
  3. The study investigates the mitigation of radiation damage on p‐type SnO thin‐film transistors (TFTs) with a fast, room‐temperature annealing process. Atomic layer deposition is utilized to fabricate bottom‐gate TFTs of high‐quality p‐type SnO layers. After 2.8 MeV Au4+irradiation at a fluence level of 5.2 × 1012 ions cm−2, the output drain current and on/off current ratio (Ion/Ioff) decrease by more than one order of magnitude, field‐effect mobility (μFE) reduces more than four times, and subthreshold swing (SS) increases more than four times along with a negative shift in threshold voltage. The observed degradation is attributed to increased surface roughness and defect density, as confirmed by scanning electron microscopy (SEM), high‐resolution micro‐Raman, and transmission electron microscopy (TEM) with geometric phase analysis (GPA). A technique is demonstrated to recover the device performance at room temperature and in less than a minute, using the electron wind force (EWF) obtained from low‐duty‐cycle high‐density pulsed current. At a pulsed current density of 4.0 × 105 A cm−2, approximately four times increase inIon/Ioffis observed, 41% increase inμFE, and 20% decrease in the SS of the irradiated TFTs, suggesting effectiveness of the new annealing technique. 
    more » « less
  4. This study investigates the effectiveness of combined thermal and athermal stimuli in mitigating the extremely high-density nature of dislocation networks in the form of low-angle grain boundaries in FeCrAl alloy. Electron wind force, generated from very low duty cycle and high current density pulses, was used as the athermal stimulus. The electron wind force stimulus alone was unable to remove the residual stress (80% low-angle grain boundaries) due to cold rolling to 25% thickness reduction. When the duty cycle was increased to allow average temperature of 100 °C, the specimen could be effectively annealed in 1 min at a current density of 3300 A/mm2. In comparison, conventional thermal annealing requires at least 750 °C and 1.5 h. For specimens with 50% thickness reduction (85% low-angle grain boundaries), the electron wind force was again unable to anneal the defects even at 3300 A/mm2 current density and average temperature of 100 °C. Intriguingly, allowing average concurrent temperature of 200 °C eliminated almost all the low-angle grain boundaries at a current density of 700 A/mm2, even lower than that required for the 25% thickness reduced specimens. Comprehensive electron and X-ray diffraction evidence show that alloys with extremely high defect density can be effectively annealed in less than a minute at approximately 200 °C, offering a substantial improvement over conventional high-temperature annealing. 
    more » « less
  5. With full knowledge of a material’s atomistic structure, it is possible to predict any macroscopic property of interest. In practice, this is hindered by limitations of the chosen characterization techniques. For example, electron microscopy is unable to detect the smallest and most numerous defects in irradiated materials. Instead of spatial characterization, we propose to detect and quantify defects through their excess energy. Differential scanning calorimetry of irradiated Ti measures defect densities five times greater than those determined using transmission electron microscopy. Our experiments also reveal two energetically distinct processes where the established annealing model predicts one. Molecular dynamics simulations discover the defects responsible and inform a new mechanism for the recovery of irradiation-induced defects. The combination of annealing experiments and simulations can reveal defects hidden to other characterization techniques and has the potential to uncover new mechanisms behind the evolution of defects in materials. 
    more » « less