skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elimination of Low-Angle Grain Boundary Networks in FeCrAl Alloys with the Electron Wind Force at a Low Temperature
Low-angle grain boundaries (LAGBs) accommodate residual stress through the rearrangement and accumulation of dislocations during cold rolling. This study presents an electron wind force-based annealing approach to recover cold-rolling induced residual stress in FeCrAl alloy below 100 °C in 1 min. This is significantly lower than conventional thermal annealing, which typically requires temperatures around 750 °C for about 1.5 h. A key feature of our approach is the athermal electron wind force effect, which promotes dislocation movement and stress relief at significantly lower temperatures. The electron backscattered diffraction (EBSD) analysis reveals that the concentration of low-angle grain boundaries (LAGBs) is reduced from 82.4% in the cold-rolled state to a mere 47.5% following electropulsing. This level of defect recovery even surpasses the pristine material’s initial state, which exhibited 54.8% LAGBs. This reduction in LAGB concentration was complemented by kernel average misorientation (KAM) maps and X-ray diffraction (XRD) Full Width at Half Maximum (FWHM) measurements, which further validated the microstructural enhancements. Nanoindentation tests revealed a slight increase in hardness despite the reduction in dislocation density, suggesting a balance between grain boundary refinement and dislocation dynamics. This proposed low-temperature technique, driven by athermal electron wind forces, presents a promising avenue for residual stress mitigation while minimizing undesirable thermal effects, paving the way for advancements in various material processing applications.  more » « less
Award ID(s):
2103928
PAR ID:
10507798
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Metals
Volume:
14
Issue:
3
ISSN:
2075-4701
Page Range / eLocation ID:
331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study investigates the effectiveness of combined thermal and athermal stimuli in mitigating the extremely high-density nature of dislocation networks in the form of low-angle grain boundaries in FeCrAl alloy. Electron wind force, generated from very low duty cycle and high current density pulses, was used as the athermal stimulus. The electron wind force stimulus alone was unable to remove the residual stress (80% low-angle grain boundaries) due to cold rolling to 25% thickness reduction. When the duty cycle was increased to allow average temperature of 100 °C, the specimen could be effectively annealed in 1 min at a current density of 3300 A/mm2. In comparison, conventional thermal annealing requires at least 750 °C and 1.5 h. For specimens with 50% thickness reduction (85% low-angle grain boundaries), the electron wind force was again unable to anneal the defects even at 3300 A/mm2 current density and average temperature of 100 °C. Intriguingly, allowing average concurrent temperature of 200 °C eliminated almost all the low-angle grain boundaries at a current density of 700 A/mm2, even lower than that required for the 25% thickness reduced specimens. Comprehensive electron and X-ray diffraction evidence show that alloys with extremely high defect density can be effectively annealed in less than a minute at approximately 200 °C, offering a substantial improvement over conventional high-temperature annealing. 
    more » « less
  2. Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr2+ ions at a dose of 1014 cm−2 were annealed using EWF at 250 °C for 60 s. We demonstrate a remarkable transformation in the irradiated microstructure, where significant increases in kernel average misorientation (KAM) and low-angle grain boundaries (LAGBs) typically indicate heightened defect density; the use of EWF annealing reversed these effects. X-ray diffraction (XRD) confirmed these findings, showing substantial reductions in full width at half maximum (FWHM) values and a realignment of peak positions toward their original states, indicative of stress and defect recovery. To compare the effectiveness of EWF, we also conducted traditional thermal annealing at 250 °C for 7 h, which proved less effective in defect recovery as evidenced by less pronounced improvements in XRD FWHM values. 
    more » « less
  3. We investigate the beneficial effects of rapid thermal annealing on structure and photoluminescence of PbSe thin films on GaAs (001) grown below 150 °C, with a goal of low temperature integration for infrared optoelectronics. Thin films of PbSe deposited on GaAs by molecular beam epitaxy are epitaxial at these reduced growth temperatures, yet the films are highly defective with a mosaic grain structure with low angle and dendritic boundaries following coalescence. Remarkably, we find that rapid thermal annealing for as short as 180 s at temperatures between 300 and 425 °C in nitrogen ambient leads to extensive re-crystallization and transformation of these grain boundaries. The annealing at the same time dramatically improves the band edge luminescence at 3.7 μm from previously undetectable levels to nearly half as intense as our best conventionally grown PbSe films at 300 °C. We show using an analysis of laser pump-power dependent photoluminescence measurements that this dramatic improvement in the photoluminescence intensity is due to a reduction in the trap-assisted recombination. However, we find it much less correlated with improved structural parameters determined by x-ray diffraction rocking curves, thereby pointing to the importance of eliminating point defects over extended defects. Overall, the success of rapid thermal annealing in improving the luminescent properties of low growth temperature PbSe is a step toward the integration of PbSe infrared optoelectronics in low thermal budget, back end of line compatible fabrication processes. 
    more » « less
  4. The softening effect of ultrasonic vibration on pure copper is studied from a new perspective with micro-tensile tests, where the gauge length of the specimen is one order of magnitude smaller than the ultrasonic wavelength. With this configuration, the amount of flow stress reduction increases linearly with vibration amplitude whereas the flow stress reduction is insensitive to the studied strain rate ranging from 0.06/s to 1/s. Temperature rise associated with ultrasonic vibration is minimal from infrared thermal imaging. In situ digital image correlation (DIC) analysis shows strain localization near ultrasonic source whereas uniform strain distribution was observed during conventional tensile test. Optical microstructure characterization shows that area fraction of annealing twins in the deformed copper reduced from 3.3% to 1.8% with ultrasonic vibration. This is possibly attributed to enhanced interaction of dislocation between twin boundaries which act as non-regenerative dislocation source. Electron backscatter diffraction (EBSD) results show that ultrasonic vibration promotes preferential grain re-orientation and reduces the misorientation within grains. 
    more » « less
  5. This work presents a multi-scale microstructural characterization of aluminum alloys processed by high-pressure torsion (HPT) and cold angular rolling process (CARP) to improve their mechanical properties. Mechanical properties such as microhardness and tensile strength were correlated with microstructural features. To understand the processing-structure-property relationships, characterization methods spanning nano- to millimeter scales were used, including X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM) EDS. TEM and STEM EDS were used to show that HPT of a Mg sheet sandwiched between Al sheets successfully produced a supersaturated solid solution (SSSS) of Mg in Al and several Al-Mg intermetallic phases, leading to significant grain refinement and increases in microhardness over pure Al. Although CARP has potential to induce the severe plastic deformation (SPD), the CARP system used in this work was not able to achieve SPD aluminum alloys. However, SEM EBSD characterization shows that CARP achieves an increase of the low-angle grain boundaries (LAGBs) and geometrically necessary dislocation (GND) density in Al-1043,which improves the mechanical properties. Moreover, a preliminary study was conducted on CAPR processed Al-6061 alloys to understand the synergistic effects precipitation and CARP-processing on the microstructure and properties. This research provides the critical insights into the capabilities and current limitations of CARP as a continuous SPD technique for aluminum alloys, and demonstrate the importance of integrated multi-scale characterization in understanding advanced materials processing. 
    more » « less