Summary In tropical and subtropical oceanic surface waters phosphate scarcity can limit microbial productivity. However, these environments also have bioavailable forms of phosphorus incorporated into dissolved organic matter (DOM) that microbes with the necessary transport and hydrolysis metabolic pathways can access to supplement their phosphorus requirements. In this study we evaluated how the environment shapes the abundance and taxonomic distribution of the bacterial carbon–phosphorus (C–P) lyase pathway, an enzyme complex evolved to extract phosphate from phosphonates. Phosphonates are organophosphorus compounds characterized by a highly stable C–P bond and are enriched in marine DOM. Similar to other known bacterial adaptions to low phosphate environments, C–P lyase was found to become more prevalent as phosphate concentrations decreased. C–P lyase was particularly enriched in the Mediterranean Sea and North Atlantic Ocean, two regions that feature sustained periods of phosphate depletion. In these regions, C–P lyase was prevalent in several lineages ofAlphaproteobacteria(Pelagibacter, SAR116,RoseobacterandRhodospirillales),Gammaproteobacteria,andActinobacteria. The global scope of this analysis supports previous studies that infer phosphonate catabolism via C–P lyase is an important adaptive strategy implemented by bacteria to alleviate phosphate limitation and expands the known geographic extent and taxonomic affiliation of this metabolic pathway in the ocean.
more »
« less
This content will become publicly available on May 1, 2026
Phosphorus mining and bioavailability for plant acquisition: environmental sustainability perspectives
This review aims to examine microbial mechanisms for phosphorus (P) solubilization, assess the impacts of P mining and scarcity, and advocate for sustainable recycling strategies to enhance agricultural and environmental resilience. Phosphorus is an indispensable macronutrient for plant growth and agricultural productivity, yet its bioavailability in cultivation systems is often constrained. This scarcity has led to a heavy reliance on fertilizers derived from mined phosphate rock (PR), which is a finite resource usually contaminated with hazardous elements such as uranium, radium, and thorium. Plants absorb only about 10–20% of P from applied fertilizers, leading to significant inefficiencies and negative environmental consequences. Additionally, the uneven geographic distribution of PR reserves exacerbates global socioeconomic and geopolitical vulnerabilities. Healthy soils enriched with diverse microbial communities provide a sustainable avenue to address these growing challenges. Rhizospheric organisms, including phosphorus-solubilizing and phosphorus-mineralizing bacteria and arbuscular mycorrhizal fungi, are capable and pivotal in the sustainable conversion of inorganic and organic P into bioavailable forms, reducing reliance on synthetic fertilizers. The mechanisms used by these microbes often include releasing organic acids to lower soil pH and solubilize insoluble inorganic phosphorus compounds and the production of enzymes, such as phosphatases and phytases, to break down organic phosphorus compounds, including phytates, into bioavailable inorganic phosphate. Some microbes secrete chelating agents, such as siderophores, to bind metal ions and free phosphorus from insoluble complexes and use biofilms for P exchange. This review also advocates for the recycling second-generation P from organic waste as a sustainable and socially equitable alternative to conventional phosphate mining.
more »
« less
- Award ID(s):
- 2019435
- PAR ID:
- 10608726
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Environmental Monitoring and Assessment
- Volume:
- 197
- Issue:
- 5
- ISSN:
- 1573-2959
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Our understanding of phosphorus (P) dynamics in the deep subseafloor environment remains limited. Here we investigate potential microbial P uptake mechanisms in oligotrophic marine sediments beneath the North Atlantic Gyre and their effects on the relative distribution of organic P compounds as a function of burial depth and changing redox conditions. We use metagenomic analyses to determine the presence of microbial functional genes pertaining to P uptake and metabolism, and solution 31 P nuclear magnetic resonance spectroscopy ( 31 P NMR) to characterize and quantify P substrates. Phosphorus compounds or compound classes identified with 31 P NMR include inorganic P compounds (orthophosphate, pyrophosphate, polyphosphate), phosphonates, orthophosphate monoesters (including inositol hexakisphosphate stereoisomers) and orthophosphate diesters (including DNA and phospholipid degradation products). Some of the genes identified include genes related to phosphate transport, phosphonate and polyphosphate metabolism, as well as phosphite uptake. Our findings suggest that the deep sedimentary biosphere may have adapted to take advantage of a wide array of P substrates and could play a role in the gradual breakdown of inositol and sugar phosphates, as well as reduced P compounds and polyphosphates.more » « less
-
ABSTRACT Feeding the growing human population sustainably amidst climate change is one of the most important challenges in the 21st century. Current practices often lead to the overuse of agronomic inputs, such as synthetic fertilizers and water, resulting in environmental contamination and diminishing returns on crop productivity. The complexity of agricultural systems, involving plant‐environment interactions and human management, presents significant scientific and technical challenges for developing sustainable practices. Addressing these challenges necessitates transdisciplinary research, involving intense collaboration among fields such as plant science, engineering, computer science, and social sciences. Five case studies are presented here demonstrating successful transdisciplinary approaches toward more sustainable water and fertilizer use. These case studies span multiple scales. By leveraging whole‐plant signaling, reporter plants can transform our understanding of plant communication and enable efficient application of water and fertilizers. The use of new fertilizer technologies could increase the availability of phosphorus in the soil. To accelerate advancements in breeding new cultivars, robotic technologies for high‐throughput plant screening in different environments at a population scale are discussed. At the ecosystem scale, phosphorus recovery from aquatic systems and methods to minimize phosphorus leaching are described. Finally, as agricultural outputs affect all people, integration of stakeholder perspectives and needs into research is outlined. These case studies highlight how transdisciplinary research and cross‐training among biologists, engineers, and social scientists bring diverse expertise to tackling grand challenges in sustainable agriculture, driving discovery and innovation.more » « less
-
Abstract Phosphorus is essential to plant growth and agricultural crop yields, yet the challenges associated with phosphorus fertilization in agriculture, such as aquatic runoff pollution and poor phosphorus bioavailability, are increasingly difficult to manage. Comprehensively understanding the dynamics of phosphorus uptake and signaling mechanisms will inform the development of strategies to address these issues. This review describes regulatory mechanisms used by specific tissues in the root apical meristem to sense and take up phosphate from the rhizosphere. The major regulatory mechanisms and related hormone crosstalk underpinning phosphate starvation responses, cellular phosphate homeostasis, and plant adaptations to phosphate starvation are also discussed, along with an overview of the major mechanism of plant systemic phosphate starvation responses. Finally, this review discusses recent promising genetic engineering strategies for improving crop phosphorus use and computational approaches that may help further design strategies for improved plant phosphate acquisition. The mechanisms and approaches presented include a wide variety of species including not only Arabidopsis but also crop species such as Oryza sativa (rice), Glycine max (soybean), and Triticum aestivum (wheat) to address both general and species-specific mechanisms and strategies. The aspects of phosphorus deficiency responses and recently employed strategies of improving phosphate acquisition that are detailed in this review may provide insights into the mechanisms or phenotypes that may be targeted in efforts to improve crop phosphorus content and plant growth in low phosphorus soils.more » « less
-
Abstract Phosphorus (P) is an essential element for all life forms and a finite resource. P cycle plays a vital role in regulating primary productivity, making it a limiting nutrient for agricultural production and increasing the development of fertilizers through extractive mining. However, excessive P may cause detrimental environmental effects on aquatic and agricultural ecosystems. As a result, there is a pressing need for conservation and management of P loads through analytical techniques to measure P and precisely determine P speciation. Here, we explore a new 2D sorbent structure (GO-PDDA) for sensing orthophosphate in aqueous samples. The sorbent mimics a group of phosphate-binding proteins in nature and is expected to bind orthophosphate in solution. Laser-induced graphene (LIG) was coated with GO-PDDA using a drop-cast method. Electrochemical impedance spectroscopy was used as a transduction technique for electrochemical sensing of orthophosphate (HPO42−) and selectivity assay for chloride, sulfate and nitrate in buffer at pH 8. The analytical sensitivity was estimated to be 347 ± 90.2 Ω/ppm with a limit of detection of 0.32 ± 0.04 ppm. Selectivity assays demonstrate that LIG-GO-PDDA is 95% more selective for ortho-P over sulfate and 80% more selective over chloride and nitrate. The developed sensor can be reused after surface regeneration with an acidic buffer (pH 5), with slight changes in sensor performance. Our results show that the sorbent structure is a promising candidate for developing electrochemical sensors for environmental monitoring of orthophosphate and may provide reliable data to support sustainable P management.more » « less
An official website of the United States government
