skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 8, 2026

Title: Incision history of the San Juan River, USA, in the past 1.2 million years
40Ar/39Ar detrital sanidine (DS) dating of river terraces provides new insights into the evolution and bedrock incision history of the San Juan River, a major tributary of the Colorado River, USA, at the million-year time scale. We dated terrace flights from the San Juan−Colorado River confluence to the San Juan Rocky Mountains. We report >5700 40Ar/ 39Ar dates on single DS grains from axial river facies within several meters above the straths of 30 individual terraces; these yielded ∼2.5% young (<2 Ma) grains that constrain maximum depositional ages (MDAs) and minimum incision rates. The most common young grains were from known caldera eruptions: 0.63 Ma grains derived from the Yellowstone Lava Creek B eruption, and 1.23 Ma and 1.62 Ma grains derived from two Jemez Mountains eruptions in New Mexico. Agreement of a DS-derived MDA age with a refined cosmogenic burial age from Bluff, Utah, indicates that the DS MDA closely approximates the true depositional age in some cases. In a given reach, terraces with ca. 0.6 Ma grains are commonly about half as high above the river as those with ca. 1.2 Ma grains, suggesting that the formation of the terrace flights likely tracks near-steady bedrock incision over the past 1.2 Ma. Longitudinal profile analysis of the San Juan River system shows variation in area-normalized along-stream gradients: a steeper (ksn = 150) reach near the confluence with the Colorado River, a shallower gradient (ksn = 70) in the central Colorado Plateau, and steeper (ksn = 150) channels in the upper Animas River basin. These reaches all show steady bedrock incision, but rates vary by >100 m/Ma, with 247 m/Ma at the San Juan−Colorado River confluence, 120−164 m/Ma across the core of the Colorado Plateau, and 263 m/Ma in the upper Animas River area of the San Juan Mountains. The combined dataset suggests that the San Juan River system is actively adjusting to base-level fall at the Colorado River confluence and to the uplift of the San Juan Mountains headwaters relative to the core of the Colorado Plateau. These fluvial adjustments are attributed to ongoing mantle-driven differential epeirogenic uplift that is shaping the San Juan River system as well as rivers and landscapes elsewhere in the western United States.  more » « less
Award ID(s):
2021744
PAR ID:
10609093
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Geological Society of America
Date Published:
Journal Name:
Geosphere
ISSN:
1553-040X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Crooked Ridge and White Mesa in northeastern Arizona (southwestern United States) preserve, as inverted topography, a 57-km-long abandoned alluvial system near the present drainage divide between the Colorado, San Juan, and Little Colorado Rivers. The pathway of this paleoriver, flowing southwest toward eastern Grand Canyon, has led to provocative alternative models for its potential importance in carving Grand Canyon. The ∼50-m-thick White Mesa alluvium is the only datable record of this paleoriver system. We present new 40Ar/39Ar sanidine dating that confirms a ca. 2 Ma maximum depositional age for White Mesa alluvium, supported by a large mode (n = 42) of dates from 2.06 to 1.76 Ma. Older grain modes show abundant 37–23 Ma grains mostly derived ultimately from the San Juan Mountains, as is also documented by rare volcanic and basement pebbles in the White Mesa alluvium. A tuff with an age of 1.07 ± 0.05 Ma is inset below, and hence provides a younger age bracket for the White Mesa alluvium. Newly dated remnant deposits on Black Mesa contain similar 37–23 Ma grains and exotic pebbles, plus a large mode (n = 71) of 9.052 ± 0.003 Ma sanidine. These deposits could be part of the White Mesa alluvium without any Pleistocene grains, but new detrital sanidine data from the upper Bidahochi Formation near Ganado, Arizona, have similar maximum depositional ages of 11.0–6.1 Ma and show similar 40–20 Ma San Juan Mountains–derived sanidine. Thus, we tentatively interpret the <9 Ma Black Mesa deposit to be a remnant of an 11–6 Ma Bidahochi alluvial system derived from the now-eroded southwestern fringe of the San Juan Mountains. This alluvial fringe is the probable source for reworking of 40–20 Ma detrital sanidine and exotic clasts into Oligocene Chuska Sandstone, Miocene Bidahochi Formation, and ultimately into the <2 Ma White Mesa alluvium. The <2 Ma age of the White Mesa alluvium does not support models that the Crooked Ridge paleoriver originated as a late Oligocene to Miocene San Juan River that ultimately carved across the Kaibab uplift. Instead, we interpret the Crooked Ridge paleoriver as a 1.9–1.1 Ma tributary to the Little Colorado River, analogous to modern-day Moenkopi Wash. We reject the “young sediment in old paleovalley” hypothesis based on mapping, stratigraphic, and geomorphic constraints. Deep exhumation and beheading by tributaries of the San Juan and Colorado Rivers caused the Crooked Ridge paleotributary to be abandoned between 1.9 and 1.1 Ma. Thermochronologic data also provide no evidence for, and pose substantial difficulties with, the hypothesis for an earlier (Oligocene–Miocene) Colorado–San Juan paleoriver system that flowed along the Crooked Ridge pathway and carved across the Kaibab uplift. 
    more » « less
  2. Understanding the tectonic and landscape evolution of the Colorado Plateau−southern Rocky Mountains area requires knowledge of the Laramide stratigraphic development of the San Juan Basin. Laramide sediment-transport vectors within the San Juan Basin are relatively well understood, except for those of the Nacimiento and Animas formations. Throughout most of the San Juan Basin of northwestern New Mexico and adjacent Colorado, these Paleocene units are mudstone-dominated fluvial successions intercalated between the lowermost Paleocene Kimbeto Member of the Ojo Alamo Sandstone and the basal strata of the lower Eocene San Jose Formation, both sandstone-dominated fluvial deposits. For the Nacimiento and Animas formations, we present a new lithostratigraphy that provides a basis for basin-scale interpretation of the Paleocene fluvial architecture using facies analysis, paleocurrent measurements, and 40Ar/ 39Ar sanidine age data. In contrast to the dominantly southerly or southeasterly paleoflow exhibited by the underlying Kimbeto Member and the overlying San Jose Formation, the Nacimiento and Animas formations exhibit evidence of diverse paleoflow. In the southern and western part of the basin during the Puercan, the lower part of the Nacimiento Formation was deposited by south- or southeast-flowing streams, similar to those of the underlying Kimbeto Member. This pattern of southeasterly paleoflow continued during the Torrejonian in the western part of the basin, within a southeast-prograding distributive fluvial system. By Torrejonian time, a major east-northeast–flowing fluvial system, herein termed the Tsosie paleoriver, had entered the southwestern part of the basin, and a switch to northerly paleoflow had occurred in the southern San Juan Basin. The reversal of paleoslope in the southern part of the San Juan Basin probably resulted from rapid subsidence in the northeast part of the basin during the early Paleocene. Continued Tiffanian-age southeastward progradation of the distributive fluvial system that headed in the western part of the basin pushed the Tsosie paleoriver beyond the present outcrop extent of the basin. In the eastern and northern parts of the San Juan Basin, paleoflow was generally toward the south throughout deposition of the Nacimiento and the Animas formations. An important exception is a newly discovered paleodrainage that exited the northeastern part of the basin, ∼15 km south of Dulce, New Mexico. There, an ∼130-m-thick Paleocene sandstone (herein informally termed the Wirt member of the Animas Formation) records a major east-flowing paleoriver system that aggraded within a broad paleovalley carved deeply into the Upper Cretaceous Lewis Shale. 40Ar/ 39Ar dating of detrital sanidine documents a maximum depositional age of 65.58 ± 0.10 Ma for the Wirt member. The detrital sanidine grains are indistinguishable in age and K/Ca values from sanidines of the Horseshoe ash (65.49 ± 0.06 Ma), which is exposed 10.5 m above the base of the Nacimiento Formation in the southwestern part of the basin. The Wirt member may represent the deposits of the Tsosie paleoriver where it exited eastward from the basin. Our study shows that the evolution of Paleocene fluvial systems in the San Juan Basin was complex and primarily responded to variations in subsidence-related sedimentary accommodation within the basin. 
    more » « less
  3. Abstract River terraces are commonly used to infer climate and tectonic histories. Yet, it is increasingly recognised that other processes, such as river capture, can affect river terrace genesis and incision rates and patterns. In this study, we conduct a field‐based investigation of river terrace sequences along the Kolokithas and Varitis Rivers in central Crete, Greece, that share a confluence and preserve geomorphic evidence for the recent capture of the Kolokithas headwaters by the Varitis. We use digital topographic analysis, mapping, and optically stimulated luminescence (OSL) geochronology to quantify the river terrace and bedrock incision response to river capture. Topographic analysis indicates the Varitis captured ~30 km2of drainage area from the Kolokithas. We find differences in terrace characteristics, number of terraces, and incision rates and patterns on the adjacent valleys. The Kolokithas has four terrace levels, and the Varitis has five. All terraces are strath terraces, except for the oldest on the Kolokithas, a ~8 m thick fill terrace that starkly contrasts the time‐equivalent ~1–2 m thick strath terrace on the Varitis. Relative and absolute age control suggests three Pleistocene terraces were emplaced during cooler climate intervals, and two Holocene terraces are perhaps because of anthropogenic disturbances. The incision patterns differ on each valley, with generally more incision upstream on the Varitis relative to the Kolokithas. Incision rates on the Varitis are roughly twice as high as on the Kolokithas, but the average incision rate of both valleys combined is comparable to coastal rock uplift rates derived from marine terraces. Collectively, our results suggest that fluvial systems are sensitive to climate and tectonic processes even when affected by geomorphic disturbances, like river capture and beheading. However, care must be taken when interpreting river terraces as direct records of climate and tectonic processes, particularly when working on a single river valley. 
    more » « less
  4. Abstract Rates of land surface processes provide insights into climatic and tectonic influences on topography. Bedrock incision rates are estimated by dating perched landforms such as strath terraces, assuming a constant bedrock incision rate from terrace abandonment to the next terrace level or present river level. These estimates express biases from the stochastic nature of sediment and water discharge in controlling river incision as well as from using a mobile channel elevation as a reference frame, leading to different incision rates when calculated over different timeframes. We introduce a 1‐D model incorporating fluvial mechanics, tectonics, sediment, and climate variability to predict these biases and assess their sensitivity to climate and tectonics. Findings suggest biases intensify under highly variable climates and slow rock uplift, with climate periodicity being a primary control for our modeled scenarios. Our model provides a mechanism to improve river incision measurement uncertainty, impacting paleoclimate and tectonic geomorphology reconstructions. 
    more » « less
  5. Abstract Rates of northern Alaska Range thrust system deformation are poorly constrained. Shortening at the system's west end is focused on the Kantishna Hills anticline. Where the McKinley River cuts across the anticline, the landscape records both Late Pleistocene deformation and climatic change. New optically stimulated luminescence and cosmogenic10Be depth profile dates of three McKinley River terrace levels (~22, ~18, and ~14–9 ka) match independently determined ages of local glacial maxima, consistent with climate‐driven terrace formation. Terrace ages quantify rates of differential bedrock incision, uplift, and shortening based on fault depth inferred from microseismicity. Differential rock uplift and incision (≤1.4 m/kyr) drive significant channel width narrowing in response to ongoing folding at a shortening rate of ~1.2 m/kyr. Our results constrain northern Alaska Range thrust system deformation rates, and elucidate superimposed landscape responses to Late Pleistocene climate change and active folding with broad geomorphic implications. 
    more » « less