skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive collective responses to local stimuli in anonymous dynamic networks
We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents are represented by vertices in a dynamic graph whose edge set changes over time, and stimuli are placed adversarially on the vertices of where each agent is only capable of recognizing a co-located stimulus. Agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that can handle arbitrary adversarial stimulus dynamics, while an adversary (or the agents themselves) reconfigures the connections (edges) of over time in a controlled way. This algorithm can be used to solve the foraging problem on reconfigurable graphs where, in addition to food sources (stimuli) being discovered, removed, or shifted arbitrarily, we would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced collective phase change and switch to a search phase in which they distribute themselves randomly throughout the graph to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing broadcast waves of state transition that may interfere with each other. Like a physical phase change, such as the ferromagnetic models underlying the gather and search algorithms used for foraging, microscopic changes in the environment trigger these macroscopic, system-wide transitions as agents share information and respond locally to get the desired collective response.  more » « less
Award ID(s):
2106687
PAR ID:
10609703
Author(s) / Creator(s):
; ;
Editor(s):
Doty, David; Spirakis, Paul
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Theoretical Computer Science
ISSN:
0304-3975
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Doty, David; Spirakis, Paul (Ed.)
    We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response. 
    more » « less
  2. Doty, David; Spirakis, Paul (Ed.)
    We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response. 
    more » « less
  3. Doty, David and (Ed.)
    We develop a framework for self-induced phase changes in programmable matter in which a collection of agents with limited computational and communication capabilities can collectively perform appropriate global tasks in response to local stimuli that dynamically appear and disappear. Agents reside on graph vertices, where each stimulus is only recognized locally, and agents communicate via token passing along edges to alert other agents to transition to an Aware state when stimuli are present and an Unaware state when the stimuli disappear. We present an Adaptive Stimuli Algorithm that is robust to competing waves of messages as multiple stimuli change, possibly adversarially. Moreover, in addition to handling arbitrary stimulus dynamics, the algorithm can handle agents reconfiguring the connections (edges) of the graph over time in a controlled way. As an application, we show how this Adaptive Stimuli Algorithm on reconfigurable graphs can be used to solve the foraging problem, where food sources may be discovered, removed, or shifted at arbitrary times. We would like the agents to consistently self-organize, using only local interactions, such that if the food remains in a position long enough, the agents transition to a gather phase in which many collectively form a single large component with small perimeter around the food. Alternatively, if no food source has existed recently, the agents should undergo a self-induced phase change and switch to a search phase in which they distribute themselves randomly throughout the lattice region to search for food. Unlike previous approaches to foraging, this process is indefinitely repeatable, withstanding competing waves of messages that may interfere with each other. Like a physical phase change, microscopic changes such as the deletion or addition of a single food source trigger these macroscopic, system-wide transitions as agents share information about the environment and respond locally to get the desired collective response. 
    more » « less
  4. Scheideler, Christian (Ed.)
    The foraging problem asks how a collective of particles with limited computational, communication and movement capabilities can autonomously compress around a food source and disperse when the food is depleted or shifted, which may occur at arbitrary times. We would like the particles to iteratively self-organize, using only local interactions, to correctly gather whenever a food particle remains in a position long enough and search if no food particle has existed recently. Unlike previous approaches, these search and gather phases should be self-induced so as to be indefinitely repeatable as the food evolves, with microscopic changes to the food triggering macroscopic, system-wide phase transitions. We present a stochastic foraging algorithm based on a phase change in the fixed magnetization Ising model from statistical physics: Our algorithm is the first to leverage self-induced phase changes as an algorithmic tool. A key component of our algorithm is a careful token passing mechanism ensuring a dispersion broadcast wave will always outpace a compression wave. 
    more » « less
  5. Soltani, Alireza (Ed.)
    Decisions as to whether to continue with an ongoing activity or to switch to an alternative are a constant in an animal’s natural world, and in particular underlie foraging behavior and performance in food preference tests. Stimuli experienced by the animal both impact the choice and are themselves impacted by the choice, in a dynamic back and forth. Here, we present model neural circuits, based on spiking neurons, in which the choice to switch away from ongoing behavior instantiates this back and forth, arising as a state transition in neural activity. We analyze two classes of circuit, which differ in whether state transitions result from a loss of hedonic input from the stimulus (an “entice to stay” model) or from aversive stimulus-input (a “repel to leave” model). In both classes of model, we find that the mean time spent sampling a stimulus decreases with increasing value of the alternative stimulus, a fact that we linked to the inclusion of depressing synapses in our model. The competitive interaction is much greater in “entice to stay” model networks, which has qualitative features of the marginal value theorem, and thereby provides a framework for optimal foraging behavior. We offer suggestions as to how our models could be discriminatively tested through the analysis of electrophysiological and behavioral data. 
    more » « less