Nanocomposites consisting of nanoparticles of iron oxide (Fe3O4) and iron carbide (Fe3C) with a core-shell structure (Fe core, Fe3O4 and/or Fe3C shells) coated with additional graphite-like carbon layer dispersed in carbon matrix have been synthesized by solid-phase pyrolysis of iron-phthalocyanine (FePc) and iron-porphyrin (FePr) with a pyrolysis temperature of 900°C, and post-annealing conducted at temperatures ranging from 150°C to 550°C under controlled oxygen- and/or nitrogen-rich environments. A comprehensive analysis of the samples’ morphology, composition, structure, size, and magnetic characteristics was performed by utilizing scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-STEM) with elemental mapping, X-ray diffraction analysis (XRD), and magnetic measurements by utilizing vibrating sample magnetometry (VSM). The effect of the annealing process on magnetic performance and efficient control of the hysteresis loop and specific absorption rate (SAR) are discussed. 
                        more » 
                        « less   
                    This content will become publicly available on March 17, 2026
                            
                            Synthesis of magnetic nanostructures in different carbon matrices and post annealing with oxygen, nitrogen and argon
                        
                    
    
            This study explores the innovative use of carbon matrices in the synthesis of magnetic nanographite, layered graphene stacks and graphene coated magnetic nanoparticles, with a focus on their morphological, structural, and magnetic prop-erties. To obtain a deeper insight into the influences of impurities in the graphene matrices on the magnetic properties of synthesized by pyrolysis, the two different metal free modifications of porphyrin such as tetraphenyl porphyrin (TPP) and tetra(4-carboxyphenyl) porphyrin (TCPP) with oxygen content (radical) were synthesized by subsequential post annealing with oxygen, argon and nitrogen, to characterize and investigate the role of oxygen and nitrogen content in graphene environment. The research highlights the significance of porphyrin and phthalocyanine metal free precursors and their metal counterparts for use as carbon matrices, examining their unique characteristics and applications in nanoparticle synthesis by sequential annealing. For example, the magnetization figure below for TPP indicates that the samples are diamagnetic at relatively high temperatures and large magnetic fields. Annealing at 150 °C for 180 min, specifically, for oxygen, it increases paramagnetic behavior and saturation. As for nitrogen, it increases coercivity. Employing advanced characterization techniques such as powder x-ray diffraction (PXRD), we analyzed the graphitization and porosity effects and layer sizes of nanographite and their impact on magnetic properties. A novel algorithm, integrating node extraction and 2D Gaussian mapping, is developed to enhance the accuracy of morphological analysis. Our findings reveal the critical role of graphene, and role of oxygen and nitrogen impurities in influencing the magnetic behavior of metal free carbon matrices and embedded nanoparticles, providing valuable insights into the design and development of advanced magnetic nanomaterials. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2112554
- PAR ID:
- 10609936
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 15
- Issue:
- 3
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Ternary metal‐oxide material systems commonly crystallize in the perovskite crystal structure, which is utilized in numerous electronic applications. In contrast to oxides, there are no known nitride perovskites, likely due to the competition with oxidation, which makes the formation of pure nitride materials difficult and synthesis of oxynitride materials more common. While deposition of oxynitride perovskite thin films is important for many electronic applications, it is difficult to control oxygen and nitrogen stoichiometry. Lanthanum tungsten oxynitride (LaWN3−δOδ) thin films with varying La:W ratio are synthesized by combinatorial sputtering and characterized for their chemical composition, crystal structure, and microstructure. A three‐step synthesis method, which involves co‐sputtering, capping layer deposition, and rapid thermal annealing, is established for producing crystalline thin films while minimizing the oxygen content. Elemental depth profiling results show that the cation‐stoichiometric films contain approximately one oxygen for every five nitrogen (δ = 0.5). Synchrotron‐based diffraction indicates a tetragonal perovskite crystal structure. These results are discussed in terms of the perovskite tolerance factors, octahedral tilting, and bond valence. Overall, this synthesis and characterization is expected to pave the way toward future thin film property measurements of lanthanum tungsten oxynitrides and eventual synthesis of oxygen‐free nitride perovskites.more » « less
- 
            Low-cost materials, scalable manufacturing, and high power conversion efficiency are critical enablers for large-scale applications of photovoltaic (PV) cells. Cu 2 ZnSn(S,Se) 4 (CZTSSe) has emerged as a promising PV material due to its low-cost earth-abundant nature and the low toxicity of its constituents. We present a compact and environmentally friendly route for preparing metal sulfide (metals are Cu, Zn, and Sn) nanoparticles (NPs) and optimize their annealing conditions to obtain uniform carbon-free CZTSSe thin films with large grain sizes. Further, the solution-stable binary NP inks synthesized in an aqueous solution with additives are shown to inhibit the formation of secondary phases during annealing. A laboratory-scale PV cell with a Al/AZO/ZnO/CdS/CZTSSe/Mo-glass structure is fabricated without anti-reflective coatings, and a 9.08% efficiency under AM1.5G illumination is demonstrated for the first time. The developed scalable, energy-efficient, and environmentally sustainable NP synthesis approach can enable integration of NP synthesis with emerging large-area deposition and annealing methods for scalable fabrication of CZTSSe PV cells.more » « less
- 
            null (Ed.)meso-Phenyl- and meso-pentafluorophenyl-porpholactones, their metal complexes, as well as porphyrinoids directly derived from them are useful in a number of technical and biomedical applications, and more uses are expected to be discovered. About a dozen competing and complementary pathways toward their synthesis were reported. The suitability of the methods changes with the meso-aryl group and whether the free base or metal derivatives are sought. These circumstances make it hard for anyone outside of the field of synthetic porphyrin chemistry to ascertain which pathway is the best to produce which specific derivative. We report here on what we experimentally evaluated to be the most efficient pathways to generate the six key compounds from the commercially available porphyrins, meso-tetraphenylporphyrin (TPP) and meso-tetrakis(pentafluorophenyl)porphyrin (TFPP): free base meso-tetraphenylporpholactone (TPL) and meso-tetrakis(pentafluorophenyl)porpholactone (TFPL), and their platinum(II) and zinc(II) complexes TPLPt, TFPLPt, TPLZn, and TFPLZn, respectively. Detailed procedures are provided to make these intriguing molecules more readily available for their further study.more » « less
- 
            Abstract Understanding the thermal decomposition of metal salt precursors on carbon structures is essential for the controlled synthesis of metal‐decorated carbon nanomaterials. Here, the thermolysis of a Ni precursor salt, NiCl2·6H2O, on amorphous carbon (a‐C) and graphene oxide (GO) substrates is explored using in situ transmission electron microscopy. Thermal decomposition of NiCl2·6H2O on GO occurs at higher temperatures and slower kinetics than on a‐C substrate. This is correlated to a higher activation barrier for Cl2removal calculated by the density functional theory, strong Ni‐GO interaction, high‐density oxygen functional groups, defects, and weak van der Waals using GO substrate. The thermolysis of NiCl2·6H2O proceeds via multistep decomposition stages into the formation of Ni nanoparticles with significant differences in their size and distribution depending on the substrate. Using GO substrates leads to nanoparticles with 500% smaller average sizes and higher thermal stability than a‐C substrate. Ni nanoparticles showcase thefcccrystal structure, and no size effect on the stability of the crystal structure is observed. These findings demonstrate the significant role of carbon substrate on nanoparticle formation and growth during the thermolysis of carbon–metal heterostructures. This opens new venues to engineer stable, supported catalysts and new carbon‐based sensors and filtering devices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
