skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 19, 2026

Title: Deterministic Physics-Based Earthquake Sequence Simulators Match Empirical Ground-Motion Models and Enable Extrapolation to Data-Poor Regimes: Application to Multifault Multimechanism Ruptures
Abstract We use the deterministic earthquake simulator RSQSim to generate complex sequences of ruptures on fault systems used for hazard assessment. We show that the source motions combined with a wave propagation code create surface ground motions that fall within the range of epistemic uncertainties for the Next Generation Attenuation-West2 set of empirical models. We show the model is well calibrated where there are good data constraints, and has good correspondence in regions with fewer data constraints. We show magnitude, distance, and mechanism dependence all arising naturally from the same underlying friction. The deterministic physics-based approach provides an opportunity for better understanding the physical origins of ground motions. For example, we find that reduced stress drops in shallow layers relative to constant stress drop with depth lead to peak ground velocities in the near field that better match empirical models. The simulators may also provide better extrapolations into regimes that are poorly empirically constrained by data because physics, rather than surface shaking data parameterizations, is underlying the extrapolations. Having shown the model is credible, we apply it to a problem where observations are lacking. We examine the case of crustal faults above a shallow subduction interface seen to break coseismically in simulations of the New Zealand fault system. These types of events were left out of consideration in the most recent New Zealand national seismic hazard model due to the modeling complexity and lack of observational data to constrain ground-motion models (GMMs). Here, we show that in the model, by breaking up the coseismic crustal and interface rupturing fault motions into two separate subevents, and then recombining the resulting ground-motion measures in a square-root-of-sum-of-squares incoherent manner, we reproduce well the ground-motion measures from the full event rupture. This provides a new method for extrapolating GMMs to more complex multifault ruptures.  more » « less
Award ID(s):
2225216
PAR ID:
10610321
Author(s) / Creator(s):
; ;
Publisher / Repository:
Seismological Research Letters
Date Published:
Journal Name:
Seismological Research Letters
Volume:
96
Issue:
4
ISSN:
0895-0695
Page Range / eLocation ID:
2431 to 2444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a database and analyze ground motions recorded during three events that occurred as part of the July 2019 Ridgecrest earthquake sequence: a moment magnitude (M) 6.5 foreshock on a left‐lateral cross fault in the Salt Wells Valley fault zone, an M 5.5 foreshock in the Paxton Ranch fault zone, and the M 7.1 mainshock, also occurring in the Paxton Ranch fault zone. We collected and uniformly processed 1483 three‐component recordings from an array of 824 sensors spanning 10 seismographic networks. We developed site metadata using available data and multiple models for the time‐averaged shear‐wave velocity in the upper 30 m (⁠VS30⁠) and for basin depth terms. We processed ground motions using Next Generation Attenuation (NGA) procedures and computed intensity measures including spectral acceleration at a number of oscillator periods and inelastic response spectra. We compared elastic and inelastic response spectra to seismic design spectra in building codes to evaluate the damage potential of the ground motions at spatially distributed sites. Residuals of the observed spectral accelerations relative to the NGA‐West2 ground‐motion models (GMMs) show good average agreement between observations and model predictions (event terms between about −0.3 and 0.5 for peak ground acceleration to 5 s). The average attenuation with distance is also well captured by the empirical NGA‐West2 GMMs, although azimuthal variations in attenuation were observed that are not captured by the GMMs. An analysis considering directivity and fault‐slip heterogeneity for the M 7.1 event demonstrates that the dispersion in the near‐source ground‐motion residuals can be reduced. 
    more » « less
  2. Abstract The Húsavík‐Flatey Fault Zone (HFFZ) is the largest strike‐slip fault in Iceland and poses a high seismic risk to coastal communities. To investigate physics‐based constraints on earthquake hazards, we construct three fault system models of varying geometric complexity and model 79 3‐D multi‐fault dynamic rupture scenarios in the HFFZ. By assuming a simple regional prestress and varying hypocenter locations, we analyze the rupture dynamics, fault interactions, and the associated ground motions up to 2.5 Hz. All models account for regional seismotectonics, topo‐bathymetry, 3‐D subsurface velocity, viscoelastic attenuation, and off‐fault plasticity, and we explore the effect of fault roughness. The rupture scenarios obey earthquake scaling relations and predict magnitudes comparable to those of historical events. We show how fault system geometry and segmentation, hypocenter location, and prestress can affect the potential for rupture cascading, leading to varying slip distributions across different portions of the fault system. Our earthquake scenarios yield spatially heterogeneous near‐field ground motions modulated by geometric complexities, topography, and rupture directivity, particularly in the near‐field. The average ground motion attenuation characteristics of dynamic rupture scenarios of comparable magnitudes and mean stress drop are independent of variations in source complexity, magnitude‐consistent and in good agreement with the latest regional empirical ground motion models. However, physics‐based ground motion variability changes considerably with fault‐distance and increases for unilateral compared to bilateral ruptures. Systematic variations in physics‐based near‐fault ground motions provide important insights into the mechanics and potential earthquake hazard of large strike‐slip fault systems, such as the HFFZ. 
    more » « less
  3. The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard (both increases and decreases compared to previous NSHMs) are substantial because the new model considers more data and updated earthquake rupture forecasts and ground-motion components. In developing the 2023 model, we tried to apply best available or applicable science based on advice of co-authors, more than 50 reviewers, and hundreds of hazard scientists and end-users, who attended public workshops and provided technical inputs. The hazard assessment incorporates new catalogs, declustering algorithms, gridded seismicity models, magnitude-scaling equations, fault-based structural and deformation models, multi-fault earthquake rupture forecast models, semi-empirical and simulation-based ground-motion models, and site amplification models conditioned on shear-wave velocities of the upper 30 m of soil and deeper sedimentary basin structures. Seismic hazard calculations yield hazard curves at hundreds of thousands of sites, ground-motion maps, uniform-hazard response spectra, and disaggregations developed for pseudo-spectral accelerations at 21 oscillator periods and two peak parameters, Modified Mercalli Intensity, and 8 site classes required by building codes and other public policy applications. Tests show the new model is consistent with past ShakeMap intensity observations. Sensitivity and uncertainty assessments ensure resulting ground motions are compatible with known hazard information and highlight the range and causes of variability in ground motions. We produce several impact products including building seismic design criteria, intensity maps, planning scenarios, and engineering risk assessments showing the potential physical and social impacts. These applications provide a basis for assessing, planning, and mitigating the effects of future earthquakes. 
    more » « less
  4. The SCEC CyberShake platform implements a repeatable scientific workflow to perform 3D physics-based probabilistic seismic hazard analysis (PSHA). Earlier this year we calculated CyberShake Study 24.8 for the San Francisco Bay Area. Study 24.8 includes both low-frequency and broadband PSHA models, calculated at 315 sites. This study required building a regional velocity model from existing 3D models, with a near-surface low-velocity taper and a minimum Vs of 400 m/s. Pegasus-WMS managed the execution of Study 24.8 for 45 days on the OLCF Frontier and TACC Frontera systems. 127 million seismograms and 34 billion intensity measures were produced and automatically transferred to SCEC storage. Study 24.8 used a HIP language implementation of the AWP-ODC wave propagation code on AMD-GPU Frontier nodes to produce strain Green tensors, which were convolved with event realizations to synthesize seismograms. Seismograms were processed to derive data products such as intensity measures, site-specific hazard curves and regional hazard maps. CyberShake combines 3D low-frequency deterministic (≤1 Hz) simulations with high-frequency calculations using stochastic modules from the Broadband Platform to produce results up to 25 Hz, with validation performed using historical events. New CyberShake data products from this study include vertical seismograms, vertical response spectra, and period-dependent significant durations. The presented results include comparisons of hazard estimates between Study 24.8, the previous CyberShake study for this region (18.8), and the NGA-West2 ground motion models (GMMs). We find that Study 24.8 shows overall lower hazard than 18.8, likely due to changes in rupture coherency, with the exception of a few regions: 24.8 shows higher hazard than both the GMMs and 18.8 at long periods in the Livermore area, due to deepening of the Livermore basin in the velocity model, as well as higher hazard east of San Pablo Bay and south of San Jose. At high frequencies, Study 24.8 hazard is lower than that of the GMMs, reflecting reduced variability in the stochastic components. We are also using CyberShake ground motion data to investigate the effects of preferred rupture directions on site-specific hazard. By default, PSHA hazard products assume all events on a given fault and magnitude are equally likely, but by varying these probabilities we can examine the effects of preferred rupture directions on given faults on CyberShake hazard estimates. 
    more » « less
  5. ABSTRACT Fault zones exhibit geometrical complexity and are often surrounded by multiscale fracture networks within their damage zones, potentially influencing rupture dynamics and near-field ground motions. In this study, we investigate the ground-motion characteristics of cascading ruptures across damage zone fracture networks of moderate-size earthquakes (Mw 5.5–6.0) using high-resolution 3D dynamic rupture simulations. Our models feature a listric normal fault surrounded by more than 800 fractures, emulating a major fault and its associated damage zone. We analyze three cases: a cascading rupture propagating within the fracture network (Mw 5.5), a non-cascading main-fault rupture with off-fault fracture slip (Mw 6.0), and a main-fault rupture without a fracture network (Mw 6.0). Cascading ruptures within the fracture network produce distinct ground-motion signatures with enriched high-frequency content, arising from simultaneous slip of multiple fractures and parts of the main fault, resembling source coda-wave-like signatures. This case shows elevated near-field characteristic frequency (fc) and stress drop, approximately an order of magnitude higher than the estimation directly on the fault of the dynamic rupture simulation. The inferred fc of the modeled vertical ground-motion components reflects the complexity of the radiation pattern and rupture directivity of fracture-network cascading earthquakes. We show that this is consistent with observations of strong azimuthal dependence of corner frequency in the 2009–2016 central Apennines, Italy, earthquake, sequence. Simulated ground motions from fracture-network cascading ruptures also show pronounced azimuthal variations in peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration, with average PGA nearly double that of the non-cascading cases. Cascading ruptures radiate high-frequency seismic energy, yield nontypical ground-motion characteristics including coda-wave-like signatures, and may result in a significantly higher seismologically inferred stress drop and PGA. Such outcomes emphasize the critical role of fault-zone complexity in affecting rupture dynamics and seismic radiation and have important implications for physics-based seismic hazard assessment. 
    more » « less