skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: On the Restriction Maps of the Fourier and Fourier–Stieltjes Algebras Over Locally Compact Groupoids
Abstract The Fourier and Fourier–Stieltjes algebras over locally compact groupoids have been defined in a way that parallels their construction for groups. In this article, we extend the results on surjectivity or lack of surjectivity of the restriction map on the Fourier and Fourier–Stieltjes algebras of groups to the groupoid setting. In particular, we consider the maps that restrict the domain of these functions in the Fourier or Fourier–Stieltjes algebra of a groupoid to an isotropy subgroup. These maps are continuous contractive algebra homomorphisms. When the groupoid is étale, we show that the restriction map on the Fourier algebra is surjective. The restriction map on the Fourier–Stieltjes algebra is not surjective in general. We prove that for a transitive groupoid with a continuous section or a group bundle with discrete unit space, the restriction map on the Fourier–Stieltjes algebra is surjective. We further discuss the example of an HLS groupoid, and obtain a necessary condition for surjectivity of the restriction map in terms of property FD for groups, introduced by Lubotzky and Shalom. As a result, we present examples where the restriction map for the Fourier–Stieltjes algebra is not surjective. Finally, we use the surjectivity results to provide conditions for the lack of certain Banach algebraic properties, including the (weak) amenability and existence of a bounded approximate identity, in the Fourier algebra of étale groupoids.  more » « less
Award ID(s):
2408008
PAR ID:
10610589
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2025
Issue:
6
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove that the homology groups of a principal ample groupoid vanish in dimensions greater than the dynamic asymptotic dimension of the groupoid (as a side‐effect of our methods, we also give a new model of groupoid homology in terms of the Tor groups of homological algebra, which might be of independent interest). As a consequence, the K‐theory of the ‐algebras associated with groupoids of finite dynamic asymptotic dimension can be computed from the homology of the underlying groupoid. In particular, principal ample groupoids with dynamic asymptotic dimension at most two and finitely generated second homology satisfy Matui's HK‐conjecture. We also construct explicit maps from the groupoid homology groups to the K‐theory groups of their ‐algebras in degrees zero and one, and investigate their properties. 
    more » « less
  2. Abstract When the reduced twisted $C^*$-algebra $$C^*_r({\mathcal{G}}, c)$$ of a non-principal groupoid $${\mathcal{G}}$$ admits a Cartan subalgebra, Renault’s work on Cartan subalgebras implies the existence of another groupoid description of $$C^*_r({\mathcal{G}}, c)$$. In an earlier paper, joint with Reznikoff and Wright, we identified situations where such a Cartan subalgebra arises from a subgroupoid $${\mathcal{S}}$$ of $${\mathcal{G}}$$. In this paper, we study the relationship between the original groupoids $${\mathcal{S}}, {\mathcal{G}}$$ and the Weyl groupoid and twist associated to the Cartan pair. We first identify the spectrum $${\mathfrak{B}}$$ of the Cartan subalgebra $$C^*_r({\mathcal{S}}, c)$$. We then show that the quotient groupoid $${\mathcal{G}}/{\mathcal{S}}$$ acts on $${\mathfrak{B}}$$, and that the corresponding action groupoid is exactly the Weyl groupoid of the Cartan pair. Lastly, we show that if the quotient map $${\mathcal{G}}\to{\mathcal{G}}/{\mathcal{S}}$$ admits a continuous section, then the Weyl twist is also given by an explicit continuous $$2$$-cocycle on $${\mathcal{G}}/{\mathcal{S}} \ltimes{\mathfrak{B}}$$. 
    more » « less
  3. An étale structure over a topological space X is a continuous family of structures (in some first-order language) indexed over X. We give an exposition of this fundamental concept from sheaf theory and its relevance to countable model theory and invariant descriptive set theory. We show that many classical aspects of spaces of countable models can be naturally framed and generalized in the context of étale structures, including the Lopez-Escobar theorem on invariant Borel sets, an omitting types theorem, and various characterizations of Scott rank. We also present and prove the countable version of the Joyal–Tierney representation theorem, which states that the isomorphism groupoid of an étale structure determines its theory up to bi-interpretability; and we explain how special cases of this theorem recover several recent results in the literature on groupoids of models and functors between them. 
    more » « less
  4. Abstract In this article, we fix a prime integer p and compare certain dg algebra resolutions over a local ring whose residue field has characteristic p. Namely, we show that given a closed surjective map between such algebras there is a precise description for the minimal model in terms of the acyclic closure and that the latter is a quotient of the former. A first application is that the homotopy Lie algebra of a closed surjective map is abelian. We also use these calculations to show deviations enjoy rigidity properties which detect the (quasi-)complete intersection property. 
    more » « less
  5. Double groupoids are a type of higher groupoid structure that can arise when one has two distinct groupoid products on the same set of arrows. A particularly important example of such structures is the irrational torus and, more generally, strict 2-groups. Groupoid structures give rise to convolution operations on the space of arrows. Therefore, a double groupoid comes equipped with two product operations on the space of functions. In this article we investigate in what sense these two convolution operations are compatible. We use the representation theory of compact Lie groups to get insight into a certain class of 2-groups. 
    more » « less