Abstract Accurate precipitation estimates are critical to simulating seasonal snowpack evolution. We conduct and evaluate high‐resolution (4‐km) snowpack simulations over the western United States (WUS) mountains in Water Year 2013 using the Noah with multi‐parameterization (Noah‐MP) land surface model driven by precipitation forcing from convection‐permitting (4‐km) Weather Research and Forecasting (WRF) modeling and four widely used high‐resolution datasets that are derived from statistical interpolation based on in situ measurements. Substantial differences in the precipitation amount among these five datasets, particularly over the western and northern portions of WUS mountains, significantly affect simulated snow water equivalent (SWE) and snow depth (SD) but have relatively limited effects on snow cover fraction (SCF) and surface albedo. WRF generally captures observed precipitation patterns and results in an overall best‐performed SWE and SD in the western and northern portions of WUS mountains, where the statistically interpolated datasets lead to underpredicted precipitation, SWE, and SD. Over the interior WUS mountains, all the datasets consistently underestimate precipitation, causing significant negative biases in SWE and SD, among which the results driven by the WRF precipitation show an average performance. Further analysis reveals systematic positive biases in SCF and surface albedo across the WUS mountains, with similar bias patterns and magnitudes for simulations driven by different precipitation datasets, suggesting an urgent need to improve the Noah‐MP snowpack physics. This study highlights that convection‐permitting modeling with proper configurations can have added values in providing decent precipitation for high‐resolution snowpack simulations over the WUS mountains in a typical ENSO‐neutral year, particularly over observation‐scarce regions.
more »
« less
This content will become publicly available on December 1, 2026
Assessment of the WRF model configuration optimization in predicting the heavy rainfall over urban city Bhubaneswar, India
Abstract Bhubaneswar, Odisha, experiences an increasing trend of heavy rainfall events (HREs). This study aims to configure the WRF mesoscale model configuration at a hectometre scale and undertakes numerical experiments at a 0.5 km grid spacing. The experiments simulate HREs and assess the various physical parameterization schemes to identify suitable combinations for the region. Sensitivity experiments with various physical parametrization options identified the top eight combinations based on rainfall statistics. Their performance was further evaluated by simulating an additional four HREs over Bhubaneswar. A novel rank analysis approach based on statistical techniques to determine the rank of each configuration. The Noah-MP; Ferrier; Multi-Scale Kain-Fritsch (MFS), Noah-MP;Ferrier; Kain-Fritsch (MFK), as well as Noah; Lin;No cumulus (NLN), and Noah; Ferrier; No cumulus (NFN) emerged as the top performers in simulating precipitation. The study also tested eight parameterization combinations for simulating air temperature, relative humidity, and wind speed. The top configurations change when a different variable is used as a reference. However, a broad choice of MFS, MFK, and Noah-MP; Ferrier; No cumulus (MFN) merged as the top configurations in simulating HRE characteristics. These model configurations were independently tested and yielded good performance in simulating the atmospheric pre-storm environment and storm characteristics. Broadly stated the choice of Noah-MP instead of the Noah land model, with Ferrier and Multi-Scale Kain-Fritsch schemes could yield good results- though there is no singular best potential. These findings help establish the computational framework for studying and improving the understanding of heavy rainfall, enhance weather hazard preparedness, and offer an optimized WRF model for forecasting HRE in cities.
more »
« less
- PAR ID:
- 10610764
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Computational Urban Science
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2730-6852
- Subject(s) / Keyword(s):
- WUDAPT
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Land surface processes are vital to the performance of regional climate models in dynamic downscaling application. In this study, we investigate the sensitivity of the simulation by using the weather research and forecasting (WRF) model at 10-km resolution to the land surface schemes over Central Asia. The WRF model was run for 19 summers from 2000 to 2018 configured with four different land surface schemes including CLM4, Noah-MP, Pleim-Xiu and SSiB, hereafter referred as Exp-CLM4, Exp-Noah-MP, Exp-PX and Exp-SSiB respectively. The initial and boundary conditions for the WRF model simulations were provided by the National Centers for Environmental Prediction Final (NCEP-FNL) Operational Global Analysis data. The ERA-Interim reanalysis (ERAI), the GHCN-CAMS and the CRU gridded data were used to comprehensively evaluate the WRF simulations. Compared with the reanalysis and observational data, the WRF model can reasonably reproduce the spatial patterns of summer mean 2-m temperature, precipitation, and large- scale atmospheric circulation. The simulations, however, are sensitive to the option of land surface scheme. The performance of Exp-CLM4 and Exp-SSiB are better than that of Exp-Noah-MP and Exp-PX assessed by Multivariable Integrated Evaluation (MVIE) method. To comprehensively understand the dynamic and physical mechanisms for the WRF model’s sensitivity to land surface schemes, the differences in the surface energy balance between Ave-CLM4-SSiB (the ensemble average of Exp-CLM4 and Exp-SSiB) and Ave-NoanMP-PX (the ensemble average of Exp-Noah-MP and Exp-PX) are analyzed in detail. The results demonstrate that the sensible and latent heat fluxes are respectively lower by 30.42 W·m−2and higher by 14.86 W·m−2in Ave-CLM4-SSiB than that in Ave-NoahMP-PX. As a result, large differences in geopotential height occur over the simulation domain. The simulated wind fields are subsequently influenced by the geostrophic adjustment process, thus the simulations of 2-m temperature, surface skin temperature and precipitation are respectively lower by about 2.08 ℃, 2.23 ℃ and 18.56 mm·month−1in Ave-CLM4-SSiB than that in Ave-NoahMP-PX over Central Asia continent.more » « less
-
Abstract Taking the examples of Hurricane Florence (2018) over the Carolinas and Hurricane Harvey (2017) over the Texas Gulf Coast, the study attempts to understand the performance of slab, single‐layer Urban Canopy Model (UCM), and Building Environment Parameterization (BEP) in simulating hurricane rainfall using the Weather Research and Forecasting (WRF) model. The WRF model simulations showed that for an intense, large‐scale event such as a hurricane, the model quantitative precipitation forecast over the urban domain was sensitive to the model urban physics. The spatial and temporal verification using the modified Kling‐Gupta efficiency and Method for Object based Diagnostic and Evaluation in Time Domain suggests that UCM performance is superior to the BEP scheme. Additionally, using the BEP urban physics scheme over UCM for landfalling hurricane rainfall simulations has helped simulate heavy rainfall hotspots.more » « less
-
The influence of the Unified Noah and Noah-MP land surface models (LSMs) on the evolution of cumulus clouds reaching convective initiation (CI) is assessed using infrared brightness temperatures (BT) from GOES-16. Cloud properties from individual cloud objects are examined using output from high-resolution (500 m horizontal grid spacing) model simulations. Cloud objects are tracked over time and related to observed clouds reaching CI to examine differences in cloud extent, longevity, and growth rate. The results demonstrate that differences in assumed surface properties can lead to large discrepancies in the net surface radiative budget, particularly in the sensible and latent heating components where differences exceed 40 W m−2. These differences lead to changes in the local mesoscale circulation patterns that are more pronounced near the edges of forested and grassland boundaries where lower-level convergence is stronger. Higher sensible heating from the Noah-MP LSM produced growth of CI clouds earlier and with increased longevity, which was closer to the timing and growth observed from GOES-16. The increased cloud growth in the Noah-MP experiment results from stronger and deeper updrafts, which lofts more cloud water into the upper levels of the troposphere. The weaker updrafts from the Noah LSM experiment results in shallower convection after CI is detected due to slower growth rates. The differences in cloud properties and growth are directly related to the land surfaces they develop above and point to the importance of accurately representing land properties and radiative characteristics when simulating convection in numerical weather prediction models.more » « less
-
Abstract The influence of the Unified Noah and Noah‐MP land surface models (LSMs) on the evolution of cumulus clouds reaching convective initiation (CI) is assessed using infrared brightness temperatures (BT) from GOES‐16. Cloud properties from individual cloud objects are examined using output from high‐resolution (500 m horizontal grid spacing) model simulations. Cloud objects are tracked over time and related to observed clouds reaching CI to examine differences in cloud extent, longevity, and growth rate. The results demonstrate that differences in assumed surface properties can lead to large discrepancies in the net surface radiative budget, particularly in the sensible and latent heating components where differences exceed 40 W m−2. These differences lead to changes in the local mesoscale circulation patterns that are more pronounced near the edges of forested and grassland boundaries where lower‐level convergence is stronger. Higher sensible heating from the Noah‐MP LSM produced growth of CI clouds earlier and with increased longevity, which was closer to the timing and growth observed from GOES‐16. The increased cloud growth in the Noah‐MP experiment results from stronger and deeper updrafts, which lofts more cloud water into the upper levels of the troposphere. The weaker updrafts from the Noah LSM experiment results in shallower convection after CI is detected due to slower growth rates. The differences in cloud properties and growth are directly related to the land surfaces they develop above and point to the importance of accurately representing land properties and radiative characteristics when simulating convection in numerical weather prediction models.more » « less
An official website of the United States government
