As web-based AI applications are growing rapidly, server rooms face escalating computational demands, prompting enterprises to either upgrade their facilities or outsource to co-located sites. This growth strains conventional heating ventilation and air-conditioning (HVAC) systems, which struggle to handle the substantial thermal load, often resulting in hotspots. Liquid-to-air (L2A) coolant distribution units (CDUs) emerge as a solution, efficiently cooling servers by circulating liquid coolant through cooling loops (CLs) mounted on each server board. In this study, the performance of a 24-kW L2A CDU is evaluated across various scenarios, emphasizing cooling effect and stability. Experimental tests involve a rack with three thermal test vehicles (TTVs), monitoring both liquid coolant and air sides for analysis. Tests are conducted in a limited air-conditioned environment, resembling upgraded server rooms with conventional AC systems. The study also assesses the impact of high-power density cooling units on the server room environment, measuring noise, air velocity, and ambient temperature against ASHRAE standards for human comfort. Recommendations for optimal practices and potential system improvements are included in the research, addressing the growing need for efficient cooling solutions amidst escalating computational demands.
more »
« less
ADVANCING IN DATA CENTERS THERMAL MANAGEMENT: EXPERIMENTAL ASSESSMENT OF TWO-PHASE LIQUID COOLING TECHNOLOGY
In response to the exponential growth of online platforms and the rise of web-based Artificial Intelligence (AI), the demand for computational power and the expansion of data centers have surged significantly. This trend necessitates advanced cooling strategies and heightened energy efficiency to address the increasing power densities of Information Technology (IT) equipment and the consequent rise in energy consumption. Consequently, there is a significant pivot towards efficient cooling mechanisms that emphasize thermal management and energy efficiency. Against this backdrop, our study thoroughly evaluates a two-phase direct-to-chip liquid cooling system's ability to effectively manage and dissipate heat in high-density rack environments. Central to our research is the deployment of a highly efficient Refrigerant-to-Liquid (R2L) Coolant Distribution Unit (CDU) across multi-racks, which face high thermal demands. This innovative system, featuring an in-row pumped two-phase CDU with a cooling capacity of 160 kW, is intricately integrated with row and rack manifolds and server cooling loops to ensure optimal cooling performance. To accurately simulate the thermal loads encountered in real-world data center operations, the study employs Thermal Testing Vehicles (TTVs). These 3U TTVs are equipped with 2.5 kW heaters, covering an extensive area of 2500 mm², thereby effectively replicating server thermal loads up to 10 kW. The investigation starts with a detailed description of the system's design and continues with the commissioning process. This process includes extensive hydraulic and thermal testing, along with a comprehensive assessment of the impact of pressure drops across the system, focusing on supply manifolds, cooling loops, dry breaks, and return manifolds, utilizing Cooling Loops (CLs) each containing four Cold Plates (CPs). The study culminates in the analysis of experimental data from heating the TTVs, focusing on the efficiency of two-phase cooling in transferring heat from the TTVs to chilled water using R134a refrigerant as the performance benchmark. Future directions include exploring eco-friendly cooling practices by investigating alternative green refrigerants with low Global Warming Potential (GWP) to replace R134a, aligning with global sustainability goals and the imperative to reduce greenhouse gas emissions. The observed maximum values were calculated at a specific volumetric flow rate of 0.48 LPM/kW and a Tcase as low as 56.4 °C was achieved. These results demonstrate the system's capability to significantly enhance thermal management in data centers, tackle the challenges presented by high-power density chips, and encourage broader adoption of two-phase cooling technologies as a sustainable strategy for thermal regulation in the face of increasing computational demands.
more »
« less
- Award ID(s):
- 2209776
- PAR ID:
- 10611032
- Publisher / Repository:
- Proceedings of the ASME 2024 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems InterPACK2024
- Date Published:
- ISSN:
- 2378-8267
- Subject(s) / Keyword(s):
- Data center Thermal management High heat density liquid cooling direct-to-chip Refrigerants Two-phase R2L CDU
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Owing to the dramatic increase in IT power density and energy consumption, the data center (DC) sector has started adopting thermally- and energy-efficient liquid cooling methods. This study examines a single-phase direct-to-chip liquid cooling approach for three high-heat-density racks, utilizing two liquid-to-air (L2A) cooled coolant distribution units (CDUs) and a combined total heat load of 128 kW. An experimental setup was developed to test different types of CDUs, cooling loops, and thermal testing vehicles (TTVs) for different operating conditions. IR images and the collected data were used to investigate the effect of air recirculation between cold and hot aisle containments on the CDU’s performance and stability of supply air temperature (SAT). Three different types of cooling loops (X, Y, and Z) were characterized thermally and hydraulically. Results show that Type Y has the lowest cold plate thermal resistance and pressure drop, among others. In a later test that included a single rack at a heat load of 53 kW and a single CDU, the heat capture ratio for fluid was found to be 94%. Experiments show that using blanking panels on the back of the racks limits hot air recirculation and maintains a steady SAT in the cold aisle. Finally, the CDU performance was evaluated at a high heat load for the three racks at 128 kW, and the average cooling capacity of the units is 58.6 kW, and the effectiveness values for CDU 1 and CDU 2 are 0.83 and 0.82, respectively.more » « less
-
As the demand for faster and more reliable data processing is increasing in our daily lives, the power consumption of electronics and, correspondingly, Data Centers (DCs), also increases. It has been estimated that about 40% of this DCs power consumption is merely consumed by the cooling systems. A responsive and efficient cooling system would not only save energy and space but would also protect electronic devices and help enhance their performance. Although air cooling offers a simple and convenient solution for Electronic Thermal Management (ETM), it lacks the capacity to overcome higher heat flux rates. Liquid cooling techniques, on the other hand, have gained high attention due to their potential in overcoming higher thermal loads generated by small chip sizes. In the present work, one of the most commonly used liquid cooling techniques is investigated based on various conditions. The performance of liquid-to-liquid heat exchange is studied under multi-leveled thermal loads. Coolant Supply Temperature (CST) stability and case temperature uniformity on the Thermal Test Vehicles (TTVs) are the target indicators of the system performance in this study. This study was carried out experimentally using a rack-mount Coolant Distribution Unit (CDU) attached to primary and secondary cooling loops in a multi-server rack. The effect of various selected control settings on the aforementioned indicators is presented. Results show that the most impactful PID parameter when it comes to fluctuation reduction is the integral (reset) coefficient (IC). It is also concluded that fluctuation with amplitudes lower than 1 ᵒC is converged into higher amplitudesmore » « less
-
The rapid growth in data center workloads and the increasing complexity of modern applications have led to significant contradictions between computational performance and thermal management. Traditional air-cooling systems, while widely adopted, are reaching their limits in handling the rising thermal footprints and higher rack power densities of next-generation servers, often resulting in thermal throttling and decreased efficiency, emphasizing the need for more efficient cooling solutions. Direct-to-chip liquid cooling with cold plates has emerged as a promising solution, providing efficient heat dissipation for high-performance servers. However, challenges remain, such as ensuring system stability under varying thermal loads and optimizing integration with existing infrastructure. This comprehensive study digs into the area of data center liquid cooling, providing a novel, comprehensive experimental investigation of the critical steps and tests necessary for commissioning coolant distribution units (CDUs) in direct-to-chip liquid-cooled data centers. It carefully investigates the hydraulic, thermal, and energy aspects, establishing the groundwork for Liquid-to-Air (L2A) CDU data centers. A CDU’s performance was evaluated under different conditions. First, the CDU’s maximum cooling capacity was evaluated and found to be as high as 89.9 kW at an approach temperature difference (ATD) of 18.3 ◦C with a 0.83 heat exchanger effectiveness. Then, to assess the cooling performance and stability of the CDU, a low-power test and a transient thermohydraulic test were conducted. The results showed instability in the supply fluid temperature (SFT) caused by the oscillation in fan speed at low thermal loads. Despite this, heat removal rates remained constant across varying supply air temperatures (SATs), and a partial power usage effectiveness (PPUE) of 1.042 was achieved at 100 % heat load (86 kW) under different SATs. This research sets a foundation for improving L2A CDU performance and offers practical insights for overcoming current cooling limitations in data centers.more » « less
-
As the online frameworks and services are growing rapidly with the evolution of web-based Artificial Intelligence (AI) applications, server rooms are upgrading in computational capacity and size to keep up with these demands. Enterprise companies with their limited capacity server rooms struggle to keep up with these increasing computational demands. Hence, some of them end up outsourcing their servers to co-located facilities (Co-Lo) and the others choose to upgrade their existing server rooms. Correspondingly, the thermal load associated with such upgrades is typically tremendous. Approximately around 40% of the power consumed by datacentres is dissipated as heat. Conventional HVAC systems fail to satisfy the requirements of such server capacities. Not only do they struggle to fulfil the cooling load, but their maldistribution of cool air into the server room forms a major cause for hotspots formation. To tackle this issue, Liquid-to-Air (L2A) Coolant Distribution Units (CDUs) are being used as a liquid-based cooling solution for rack-level cooling. This type of CDUs provide efficient cooling for servers through liquid coolant that is distributed into cooling loops mounted on top of each server board. The generated heat is curried away using this liquid coolant back to the CDU, which then dissipates it into the surrounding air using dedicated pumps, fans, and heat exchanger, hence the name Liquid-to-Air. In the present work, one of the most popular liquid cooling strategies is explored based on various scenarios. the performance of a 24-kW liquid to Air (L2A) CDU is judged based on cooling effect, stability, and reliability. The study is curried out experimentally, in which a test rack with three thermal test vehicles (TTVs) are used to investigate various operation scenarios. Both liquid coolant and air sides of this experimental setup are equipped with the required instrumentations to monitor and analyse the tests. All test cases were taken in a room with limited air conditioning to resemble the environment of upgraded server rooms with conventional AC systems. Moreover, the impact of using such high-power density cooling unit on the server room environment with restricted HVAC system is also brought to light. Environmental and human comfort parameters such as noise, air velocity, and ambient temperature are measured under various operation conditions and benchmarked against their ranges for human comfort as listed in ASHREE standards. At the end of this research, recommendations for best practice are provided along with areas of enhancement for the selected system.more » « less
An official website of the United States government

